Helping manufacturers across the globe achieve sustainable leaner manufacturing processes

Knight Group

Exclusive Supplier Agreements

STAINLESS STEELS

NICKEL ALLOYS

KNUFOIL

TITANIUM ALLOYS

ALUMINIUM ALLOYS

COPPER ALLOYS

CARBON STEELS

CLAD & PLATED METALS

OVER 2500 STOCK ITEMS

Low Width
Thickness Ratio
3:1 unique to the
industry (normal
minimum is 8:1)

Over 75 years Experience

Company Information

Quality & Approvals

03
Processing

O4.
Products

05
Packaging

About Us

The Knight Group is a family owned business that has built a reputation for providing the highest quality products and solutions to global manufacturers since 1940. We are now one of the largest Precision Strip Stockholding and Processing facilities in Europe.

Comprised of Knight Strip Metals Ltd (KSM), with production facilities in the UK and Precision Metals EU (PM) in Belgium, the Knight Group is a multi-metal stockist and processor, providing coil, strip and wire across 6 continents.

Our reputation for quality, innovation and reliability, has led to us being the favoured supplier across a wide range of sectors and our continued growth. Whilst we have an impressive existing operation, our commitment to investing in further processing capabilities, expanding our product ranges and developing the expertise of our team, ensures the continued expansion of the Knight Group.

We offer a comprehensive range of precision strip and wire, stocking one of the biggest ranges in Europe, including: Stainless Steel, Nickel Alloys, Titanium Alloys, Aluminium Alloys, Copper Alloys, Mild Steel and Clad and Plated Metals. We have established exclusive agreements with a number of mills to offer specialist and bespoke materials.

Our Key Benefits

Our People

At the heart of any business is people. At the Knight Group we have developed a dedicated team of people with a valued wealth of knowledge and experience within the metals industry. No matter what your metal needs are, our team will provide you with individual customer support and the best customer experience in the industry.

Products

We offer a comprehensive range of precision strip and wire, stocking one of the biggest ranges in Europe. We maintain a stock 2500 individual items of the most popular materials, adapting to suit our customers production needs. With established exclusive agreements with a number of mills to offer specialist and bespoke material, we can source most materials including those outside of our standard range.

Quality

Being able to supply high quality materials, reliably and ethically sourced is key to our business and one of the reasons we are a favoured supplier of manufacturers across the globe. Our materials are fully traceable and Certificates of Conformity can be supplied on request or downloaded from our website.

Extensive Processing Capabilities

We provide bespoke processing services to help reduce our customers costs and manufacturing times. We can supply you with material cut and finished to your specifications and production ready delivered.

Competitive Pricing

We know two of the key factors in purchasing decisions are quality and cost. We have established partnerships with key mills across the globe, and as one of the largest suppliers in Europe, we can negotiate the best price for material, meaning you don't have to compromise quality for cost.

AVAILABLE AS
FOIL, COIL, SHEET AND WIRE
STAINLESS STEEL ALLOYS
TITANIUM ALLOYS
NICKEL ALLOYS
ALUMINIUM ALLOYS
CLAD ALUMINIUM
COPPER ALLOYS
MILD STEEL
CLAD AND PLATED METALS

Global Sourcing and Distribution

Thanks to our global exports network of freight providers, you can choose from air, land or sea freight so you can have your material where you want, when you want. We deliver to over 61 countries around the globe and each year that number grows. We have preferred carriers who can offer short lead times on most products and custom packing solutions to ensure your materials arrive safely and on time, wherever in the world you need them.

"Expertise and Experience Combined"

Our ongoing successful partnerships can be attributed to the specialist knowledge and expertise and the ability to understand customers' materials problems and apply our resources to find the appropriate solution. We continually invest in our sales and purchasing teams, building upon their experience with ongoing training and product knowledge support.

Our focus on developing partnerships with both our customer and supplier base have led to reducing costs and maximising efficiency in both directions, without compromising on quality or lead times. Through working closely together, and using innovation, experience and expertise, allows us to tailor make solutions for your individual needs.

With a diverse global customer base, the Knight Group supply materials to manufacturers across multiple sectors including: Aerospace, Automotive, Construction, Cryogenic, Defence, Energy, Oil and Gas, Telecommunications, Photo and Laser Etching, Medical and Pharmaceutical, Chemical and Precision Engineering.

Our Key Sectors

Automotive

Marine

Chemical and Photo Etch

Precision Stamping & Springs

Renewable Energy

Medical

Our History

Petrochemical, Oil and Gas

ESTABLISHED

E.A. Knight & Sons, started as family metals business in North London, supplying manufactures across the UK.

1940

EXPANSION Adapting to the

1958

growing metal needs of an expanding customer base, the business is relocated to a larger, combined office, warehouse and processing facility in Potters Bar. Hertfordshire.

RELOCATION

With new processing technologies and materials available, we expand our range of precision strip metal stock, and move to a purpose built combined warehouse processing and offices facility in Potters Bar.

EXPANSION

1975

Precision Metals EU was opened to provide further support and stock holding facilities to our growing European

REDEVELOPMENT

The Potters Bar site is redeveloped to accommodate additional machinery and stock.

ACQUISITION

1999

Knight Group acquired slitting machine manufacturer and metals processing company, Charles Harbage. The increase in capability makes the Knight Group one of the largest independent precision strip processors in Europe

EXPANSION

Our Processing and warehouse facility is relocated to Saltley, accommodating additional stock lines and machinery and our growing team.

2000

Today

EXPANSION

Today we supply over 61 countries. As one of the largest independent Precision Strip and Wire Stock holding and Processing suppliers in Europe, we continue to invest in the skills and expertise of our team, extending out stock range and our facilities.

customer base.

1985

Our Mission

"TO BE THE SUPPLIER OF CHOICE FOR LOCAL AND GLOBAL MANUFACTURERS"

Our Aims

As the world around us continually changes, we too must continue to adapt and evolve to ensure a sustainable business for today and for the future that lies ahead. People are our most valued asset, with knowledge, experience, commitment and a united approach, we can continue to achieve our goals and share in the rewards. We have a continual programme of development and as we grow our expertise and knowledge, we continue to expand on our products and service offering to support our customers in growing their businesses.

Our Mission

To continue the growth and development of a sustainable business through being the supplier of choice for local and global manufacturers by providing high quality materials, processing & superior customer service through experience and innovation.

The Knight Group currently supplies 61 countries, across 6 continents and has continued focus on export growth. We offer a range of bespoke packaging and delivery options tailored to the specifications of our customers. No matter where you are, you have your material delivered how, when and where you want.

We pride ourselves on building strong long term relationships with our global partners and know the importance of understanding the individual requirements and expectations of customers and suppliers alike to ensure efficient, effective sustainable solutions. We have a responsive customer service approach and facilitate global trade with a knowledgeable sales team.

10 languages are spoken amongst the team including English, Spanish, French, German, Italian, Dutch, Flemish, Hungarian, Hebrew and Arabic.

"We offer flexible logistical solutions to ensure you can have material how you want, where you want, when you want"

Your Goals

Skills

We have a knowledgeable, multi-lingual sales and customer services team on hand to share their expertise and find the right solution for you. Our production operatives are multi-machined trained with an impressive level of skill and experience. They ensure your material meets your exact production needs

Inventory

You will have no need to store excess materials when you take advantage of our just in time service. With over 815 tonnes of material in stock, established mill connections and extensive in-house processing available, you can rely on us to deliver all your material, how and when you need it.

Over Production

We order large volumes of material, ensuring we can offer you the best price, no matter how much you need. With low minimum order quantities and test samples available, you can order only what you need.

Over Processing

With one of the largest processing facilities in Europe, you can have your material delivered in custom widths and lengths to suit your end products. With ready to use material, you can effectively reduce costs, time and resources through minimising your storage needs, unnecessary downtime and material waste.

Transport

With our transparent pricing, you can easily make the decision that best suits your business. You can choose from your own or our established global network of freight providers You can also collect from our conveniently located sites in the UK and Belgium.

Waiting

We stock over 2500 items as standard and deliver over 3000 tonnes of material every year, to 61 counties around the globe. You can be confident that with our extensive stock range, processing capabilities and flexible transport options, you won't be waiting for your order.

Motion

Our strip products can be supplied in either "pancake" form or in a traverse wound spool. A traverse wound spool can hold up to ten times more material, reducing the need to move and store materials. Our packaging is also tailored to ensure materials are ready to use.

Defects

Our customers rely on us to cut costs, without compromising quality. As a result, we only stock materials from approved sources and supply test certificates as standard. Our robust quality control system includes inspecting all materials on arrival and prior to despatch.

From small fabricators to OEMs, lean manufacturing goals are of increasing significance to ensuring a business's sustainability. We aim to assist all our customers in eliminating waste in their operations through our position as a strategic supplier.

The world around us continually changes. As individuals and businesses, we must adapt and grow with these changes. Resource management is at the forefront of global conversations and whilst as individuals, we are encouraged to "do our bit," so too are businesses. Reducing waste offers manufacturers more than just environmental benefits. With lean strategies in place, there is the potential for cost savings and greater sustainability in an uncertain economic climate.

The most common manufacturing wastes identified are waiting, transport, motion, inventory, defects, over-processing, over production and skills. Regardless of industry sectors served or end product types, these "wastes" have the potential to impact any manufacturing business.

Undeniably, these processes start from within, but we are sure that our knowledgeable and experienced team can help you achieve your manufacturing goals.

"We help
manufacturers
across the
globe achieve
sustainable leaner
manufacturing
processes"

Quality

Commitment to ensuring our products and services are consistently delivered to the highest standards our customers and colleagues deserve.

Efficiency

Offering services that support our customers in reducing production costs and time without compromising quality. Providing a responsive approach in every situation.

Innovation

Embracing challenges and change with enthusiasm and a solution focused attitude.

Learning from our experience to adapt our approach for the better. Striving for better.

Trust

Ethical, Responsible and Fair Business Practices. Committed to honesty, timeliness and clarity in communicating. Delivering what we say we will, when we say we will.

Partnership

Valuing the contributions of customers, colleagues and suppliers as key partners in achieving goals to grow and maintain a sustainable business.

Investment

Giving the time, effort, energy and financial investment to support ongoing growth in knowledge, resulting in success for customers and ourselves.

Exclusive Supplier Sourcing

WE HAVE OVER 600 SUPPLIERS IN OUR NETWORK SO YOU CAN HAVE YOUR MATERIAL HOW, WHEN AND WHERE YOU WANT

Approvals

Customers purchasing decisions are not driven solely by price, but factor in quality, reliability and increasingly, ethical and environmental concerns. With growing pressures for transparency of practices, the Knight Group are proud to hold multiple approvals and accreditations, granted by national and international authorities, sector manufacturers and agencies. We continue to expand our range of approvals and accreditations in line with the needs of customers.

Our memberships of a number of key institutions, including the British Stainless Steel Association (BSSA), offer further assurance of our commitment to promoting manufacturing, whilst working to the highest standards of quality and integrity. All of our approvals are available to view and download from our website www.knight-group.co.uk

We hold a number of Approvals Including:

British Standard Approvals

- BS EN ISO 9001, 9120 No. FM 02114
- BS EN ISO 9001 No. FM 611455

Customer Approvals

- · Rolls-Royce: Approval No. 01679
- Rolls-Royce Deutchland No. 118990 / 02
- · Airbus UK: Approval No.20099 and 228990
- BAE Systems Regional Aircraft: Approval No. RALOA/00254/2
- BAE Systems: Approval No. BAE/AG/20384/MAA Airbus UK: Approval No.20099 and 228990
- Westland Helicopters: Approval No. SQA / V00246
- · Safran DK6000
- Hawker Beachcraft Approval HBIFSAS/PART2/0595
- UTC Aerospace Systems/ HS Marston Aerospace Limited Approval Certificate AS 132
- Spirit Aero Approval Certificate No: SPIRIT1298
- Meggitt Certificate: MQAG/2012/MCSD/MCSC/D/115

Specialist Accreditations

- EcoVadis Silver Award
- Forestry Commission: Wood Packaging Certificate Number FC1051

For the most up to date list of our approvals and accreditations, please see our website for details.

Quality

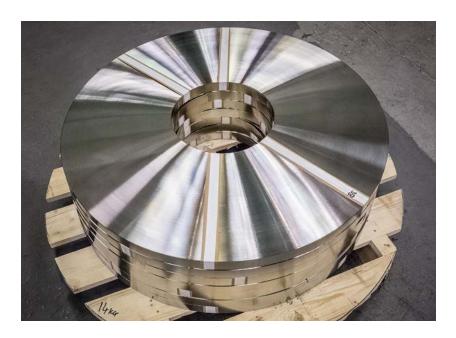
Our key objective is to provide our customers complete assurance and satisfaction in the quality of our products and services. We are the favoured supplier of manufacturers across the globe, owing to the reliable quality of the products and services our customers receive and their continued confidence that our competitive cost does not compromise quality.

Our companies work to a Quality Management System, as defined in ISO 9001/9120, and approved by the BSI. We work in partnership with the BSI, who carry out regular audits to ensure compliance with these standards and that we are operating with efficiency and accountability at all times.

Working within the framework of ISO 9001 and ISO 9120, our quality system meets or exceeds the criteria. We review our processes regularly to ensure an efficient and robust process is in place at all times, with necessary support and resources available. All of the Knight Group employees receive regular training to maintain familiarity and adherence to our Quality Management System. The commitment from our employees ensures the supply and processing of all material, meets the standards set. As a result, we are consistently able to comply with customers' demands, delivering quality products and processing.

To facilitate fast turnaround times, we offer in-house tensile, hardness and chemical analysis testing. We can also supply fully traceable records for our materials by request and Certificates of Conformity are issued as standard when materials are supplied. For further assurance of our integrity and longevity, we are long standing members of a number of institutions including the British Stainless Steel Association (BSSA), Institute of Spring Technology (IST), Midlands Aerospace Association (MAA) and the Photo Chemical Machining Institute (PCMI).

The Knight Group at all times complies with statutory and regulatory requirements. Additionally, we conduct our business in strict compliance with all applicable domestic and international legal standards. We strive to ensure business ethics are practiced with particular emphasis on free competition and rejection of any form of corruption.



Processing

Your Material Your Way

The Knight Group are industry leaders in the supply and processing of strip, coil and wire, consistently exceeding expectations of quality, service and performance. With a number of accreditations, including ISO 9001 and ISO 9120, we are the supplier of choice for global manufacturers where quality, reliability and lean manufacturing are at the heart of their priorities. Most manufacturers are facing increasing demands for goods to be delivered with tighter time frames and even tighter margins. By selecting the processing to meet your specific needs, your material can be prepared and delivered to the exact size, length and finish you require, saving valuable production time and costs. Our processing is offered at a competitive price and with a flexibility to select only the services you need and want, giving you maximum versatility and minimum cost.

We have invested heavily in our bespoke machinery and training our established team of operators, so that we can offer a truly comprehensive range of processing to complement our extensive range of stocked material.

Our People

At the heart of any business is people. At the Knight Group we have developed a dedicated team of people with a valued wealth of knowledge and experience within the metals industry. Our staff receive continual, high quality training to ensure they can maximise their personal potential. Our production team are multi machine trained to allow us flexibility in processing, ensuring we can offer efficient processing even with tight turnaround time. With sustainable practices at the forefront of manufacturers' success our team can processes your material with accuracy you need to cut time and costs.

Slitting & Shearing

As one of the largest independent processors in Europe, the Knight Group has 26 slitting machines, providing a large workload capacity to accommodate fast turnaround times to meet even the most demanding deadlines.

Our machines are state of the art, with ultra fine tolerances and a substantially superior width to thickness ratio of 3:1 compared to the industry standard of 8:1, capable of processing all material sizes and specifications.

We have a skilled team of experienced machine operators that ensure the efficient and safe running of our production facilities, with all materials handled with care from arrival to dispatch.

	Slit Width Tolerances Dimensions in (mm)										
Specified	Thickness		Wi	dth							
From	Up To	<40	40 < W <150	150 < W <305	>305						
0.025	0.25	± 0.10	± 0.12	± 0.15	± 0.20						
0.25	0.50	± 0.12	± 0.15	± 0.20	± 0.25						
0.50	1.0	± 0.15	± 0.20	± 0.25	± 0.30						
1.0	2.0	± 0.20	± 0.25	± 0.30	± 0.35						
2.0	4.0	± 0.25	± 0.30	± 0.35	± 0.40						
4.0	6.5	± 0.30	± 0.35	± 0.40	± 0.45						

26 Slitting Machines for all Sizes and Material Specifications

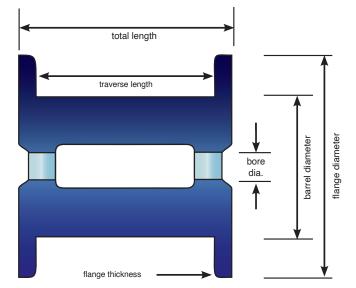
Low Width Thickness Ratio 3:1 unique to the industry (normal minimum is 8:1)

Ability to offer Ultrafine Width Tolerances down to +/- 0.025mm (0.001")

Thicknesses: 0.013mm to 6.5mm (0.0005" to 0.26") Widths:

0.64mm to 1100mm (0.025" to 43")

Traverse Winding


With efficiency as one of our key values at the Knight Group, we have successfully developed in-house traverse winding to support our customers in reducing their manufacturing times and costs.

Traverse winding provides an alternative to single coil "pancake" form of feed supply, capable of holding up to ten times more material. Each traverse wound coil increases productivity and enables longer uninterrupted production runs, by reducing the number of coils needing to be re reloaded. Machine downtime and coil handling are minimised and storage and scrap can be dramatically reduced. We can offer traverse wound strip on your choice of spools from 20kg to 100kg max.

Traverse Winding Spool Dimensions									
Spool Type	Argonaut	DIN 355	DIN 500						
Maximum Weight (kg)	20	50	100						
Total Length (mm)	100	200	250						
Traverse Length (mm)	85	160	180						
Flange Diameter (mm)	300	355	500						
Barrel Diameter (mm)	180	224	315						
Bore Diameter (mm)	51.5 +0.5	36 +0.5	36 +0.5						

Traverse Winding Tolerances								
S	Specified Thickness (mm)							
From	From Up To Width <19							
0.10	0.25	± 0.10						
0.25	0.50	± 0.12						
0.50	1.0	± 0.15						

5 Traverse Winding Lines

Spools offer long length coils that are difficult or impossible to handle as flat pancake coils

Spools up to 100kg in Weight

Slitting Width Range is from 3 mm up to 20mm (0.118" to 0.787") Slitting Thickness Range from 0.1mm up to 0.5mm (0.004" to 0.020")

Reduced Machine Downtime
Longer Production Runs
Reduced Storage and Scrap
Safer Material Handling
Reduced Production Time and Costs

Cut to Length

The Knight Group knows that manufacturers are under constant pressure to get their products processed faster and cheaper and stay ahead of their competitors. Space is also at a premium and many manufacturers do not have onsite facilities to store large quantities of material for processing to ensure minimal machine downtime.

By offering our customers material cut and packaged to their exact specifications, we help hundreds of our customers to achieve leaner manufacturing processes to maintain a sustainable and successful business. We have 8 cut to length lines, with multiple encoders used for multi-lane cutting of narrow materials. Operated by our skilled and experienced team, you can rely on very flat, high surface quality blanks from your chosen material, cut quickly and with great accuracy. We offer highly competitive rates to make cut to length an attractive cost and time saving decision. All material is quality checked and then carefully packed in bespoke packaging. Available for both collection or delivery to suit your business needs, your material will arrive machine ready.

8 Cut to Length Lines

High Quality Surface Finish Blanks
Lengths up to 6 Metres (236.22")

Heavy Gauge Lines for 3mm Metal Stock Up to a 1000mm (39.37") Wide and Thicker

Gauges up to 6mm (2.36") at Reduced Widths

Specialist Foil Lines to Cut High Quality Flat

Precision Blanks for the Chemical Etching and Laser Industries

Widths up to 1000mm (39.37") and Gauges from 0.05mm (0.002")

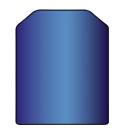
	Cut to Length Tolerances For widths up to 1000mm										
Thickness	Thickness	Thickness Length (mm)									
From	Up To	2000 < L <3000	4000 < L <6000								
0.1	0.5	± 0.25	± 0.4	± 0.6	± 1.0						
0.5	1.5	± 0.4	± 0.6	± 1.0	± 3.0						
1.5	3.0	± 0.6	± 1.0	± 3.0	± 5.0						
3.0	5.0	± 1.0	± 7.0								

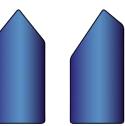
Square thin gauge blanks up to 0.6mm in thickness and 650mm wide can have an accuracy across the diagonals of ±0.5mm

Edge Finishing

Edge-Dressing: Cutting Risks and Cutting Costs

During the production process of strip and coil, the material develops a sharp edge, commonly referred to as a burr. This sharp edge has both safety and manufacturing implications, as it poses a health and safety hazard and the material can be more difficult to work with, increasing manufacturing time and ultimately costs.


The Knight Group offers manufacturers the flexibility to choose the processing that meets your needs and we can supply material edgedressed to your specifications, whether it is the commonly requested rounded or square edge shapes or you need a contoured edge shape tailored specifically to you. We design and use Bespoke Tungsten Carbide Tooling to meet the most exacting custom edge requirements on precision strip.


With the heavy investment in our bespoke machinery and a wealth of experience in our team, our machines can offer precision processing in high volumes, with fast turnaround times.

Edge Dressing										
Edgo Typo	Width	Range	Thickness Range							
Edge Type	mm	inches	mm	inches						
De-burred Safe	4.5 - 110	0.18 - 4.33	0.15 - 3.0	0.006 - 0.118						
Fully Rounded	4.5 - 110	0.18 - 4.33	0.15 - 2.0	0.006 - 0.080						
Dressed Square	7.0 - 80	0.28 - 3.15	0.15 - 2.0	0.006 - 0.080						
Chamfered	10.0 - 80	0.39 - 3.15	0.30 - 2.0	0.012 - 0.080						
Rolled Round	8.0 - 75	0.32 - 2.95	0.80 - 3.50	0.032 - 0.138						

Typical Edge Profiles

			Eage Pro	ming Siz	e Hange				
	Size Range		filing Removal)	Edge	Rolling	Roll Deburring			
		mm	inches	mm	inches	mm	inches		
	Thickness	0.1 - 3.0	0.004 - 0.12	1.2 - 4.0	0.05 - 0.16	0.2 - 2.0	0.008 - 0.08		
	Width	3.0 - 80.0	0.12 - 3.15	8.0 - 80.0	0.32 - 3.15	3.0 - 600	0.12 - 23.62		
	Coil Types		ke, Open Spool Wound	Par	ncake	Pa	ancake		

5 Edge Finishing Lines

Bespoke Tungsten Carbide Tooling

Simple de-burring Rounded Edges Chamfered Edges Square Edges

Available in: Pancake Coils or Spools

Warehouse

With one of the widest ranges of precision strip in Europe, the Knight Group are able to supply most strip metal requirements from an extensive range of stock at our major facilities in the UK and Belgium. The warehouse racking at our expansive facility in Birmingham can accommodate a range of coil sizes up to 5 tonnes in weight and up to 73" (1855mm) in diameter. With the use of turret trucks, we can use the full height of the building and ensure a maximum level of stock can be stored. We use a computerized stock management system to ensure all incoming materials are accurately net weighed and given allocated positions, allowing our team real-time information on stock levels to ensure we can provide accurate responsive customer service.

Over 40,000 sq.ft Warehouse

Widest Range throughout Europe of Alloys and Thicknesses of Precision Strip Metals Held in Stock

> Fully Barcoded and Computerised Stock Management System

Short Lead Times

Bespoke Packing

Worldwide Distribution

Products

We offer a comprehensive range of precision strip and wire, stocking one of the biggest ranges in Europe, including: Stainless Steel Alloys, Mild Steel, Nickel Alloys, Titanium Alloys, Aluminium Alloys, Bronze and Copper Alloys, as well as Clad Metals and Plated Strip. We tailor our business to your needs, so whether you are looking for large volumes or test materials for prototypes and trials, we can provide the material with the specifications you need, with a cost that does not compromise on quality. We have established exclusive agreements with a number of mills to offer specialist and bespoke materials in addition to an impressive standard stock range of over 2500 items of precision strip in coil, sheet and wire form. You can rely on us to consistently provide you with the best products and lead times with competitive pricing. Materials can be tested on request and thanks to our established supply network. we can source materials you want that are outside of our standard stock range. If you are looking to cut your costs further, we offer bespoke processing services to ensure your material arrives exactly how, when and where you want it.

"COMPETITIVE PRICING WITHOUT COMPROMISING QUALITY"

Coil

As one of the largest multi-metal stockholders in Europe, we supply an comprehensive range of Stainless Steels, High Performance Nickel Alloys, Mild and Carbon Steels, Aluminium Alloys, Titanium Alloys, Copper Alloys and Plated Strip. With strip thickness from 0.010 mm up to 3 mm and widths from 1.0 mm up to 1250 mm, you can have material to the exact specifications you need. If you want to reduce your manufacturing costs and time, you can also choose from a wide range of processing options designed to support lean manufacturing goals.

Surface Finishes

Selecting the best surface finish on material is not based solely on aesthetic properties desired for the end application, but also for their corrosion resistance. We offer a full range of surface finishes to suit your desired applications and our experienced sales team are available to provide you with excellent technical support when selecting material that meets your needs.

Large stock of precision strip

Strip width from 1.0 mm up to 1250 mm
Strip thickness from 0.010 mm up to 3 mm
Thicknesses above 3mm available
by request

Process and Supply – Metal Strip
We process in house and supply strip as:
Pancake coils, Traverse wound coil,
Flat blanks, Sheets
Cut to length Stainless Steel strip

Special Areas – Stainless Steel Strip
Temper rolled strip
Hard rolled strip
Soft steel strip
Thickness less than 0.4mm
Edge conditioning

Foil, Coil, Sheet & Wire

Wire

The Knight Group offer a comprehensive range of high quality wire products, including flat wire, round wire, profile wire and wire rope, in over fifty different alloys, meeting the needs of manufactures across the globe. Whatever your product or application, whether you need a simple commercial shape or something more complex or bespoke, we can supply all your wire needs. You can choose the exact size and shape profile needed, supplied in cut lengths, coils or spools to suit your needs, reducing your waste material and minimising costs and time. We are able to supply ultra fine wire from 0.025 mm dia., suitable for medical and textile applications, up to 10.00 mm dia in lengths from 0.1mm to 4m lengths (longer lengths are available by request).

Round and Profile Wire

Round Wire from: 0.1 mm up to 10.00 mm dia Profile Wire: up to 45 mm²

Supplied as Cut Lengths/ Straightened, Coils, Formers or Spools

Profile Wire Cut lengths from 10 mm to 10 m Round Wire Cut Lengths from 10 mm to 10 m

Coils from 1 kg to 1000 kgs Formers from 500 kgs to 1000 kgs Spools - Wide Range Available

Stainless Steel

The main justification for selecting Stainless Steel for a given application is its outstanding corrosion and oxidation resistance which, along with other exceptional properties, such as the ability to develop very high strength through cold working or heat treatment, excellent formability and capability to withstand cryogenic temperatures, makes it a very versatile material.

Stainless Steels have a wide range of microstructures which are controlled by composition and, although all Stainless Steels must contain chromium to form the complex oxide surface which gives Stainless Steel its protection, other alloying elements have significant effects. In discussing the generic group "Stainless Steels" it is convenient to categorise them in terms of microstructure.

	STAINLES	S STEEL ST	OCK RANGE		
TYPE	COIL STOC	K RANGE	WIRE STOCK RANGE		
III	Thickness (mm)	Width (mm)	Round	Shaped	
		AUSTENITI	С		
Annealed	0.01 - 3.0	3 - 1250			
All other Tempers	0.01 - 2.0	3 - 1250	0.1 – 10.00 mm dia	Upto 45 mm2 area	
		FERRITIC			
Annealed	0.05 - 3.0	3 - 650			
All other Tempers	0.05 - 1.6	3 - 450	0.1 – 10.00 mm dia	Upto 45 mm2 area	
		MARTENSITI	С		
Annealed	0.127 - 3.0	3 - 450	0.1 – 10.00 mm dia	Upto 45 mm2 area	
	PRECIPITA	ATION HARDEN	IING (17/7 PH)		
Annealed	0.02 - 1.5	3 - 620	0.1 – 10.00 mm dia	Linto 45 mmO oros	
Condition 'C'	0.025 - 1.0	3 - 620	0.1 – 10.00 mm dia	Upto 45 mm2 area	
	HEA	AT RESISTING	STEELS		
Annealed	0.025 - 3.0	3 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area	
	Other widths o	can be made availa	able upon request		

	SURFACE FINISHES AVAILABLE OF SHEET, PLATE AND STRIP								
Abbreviation	Type Of Process Route	Surface Finish / Notes							
2D	Cold rolled,heat treated, pickled.	Smooth and dull, a finish for good ductility, not as smooth as 2B or 2R.							
2B	Cold rolled, heat treated, pickled	Smoother than 2D, a common finish for further processing, not bright.							
2R	Cold rolled, bright annealed.	Smooth, bright, reflective, a common finish for further processing.							
2H	Cold rolled, work hardened.	Bright, temper rolled to obtain a higher strength.							
2Q	Hardened and tempered, scale free.	Free of scale, either bright hardened and tempered or descaled afterwards.							

Types

Austenitic Stainless Steel

Ferritic Stainless Steel

Martensitic Stainless Steel

Precipitation Hardening Stainless Steel

Duplex & Super Duplex Stainless Steel

The high temperature form of iron with carbon in solid solution is known as Austenite which is non-magnetic. With a range of alloying additions possible, the most common being Nickel, Austenitic Stainless Steel remains non magnetic at room temperature. Traditional Austenitic Stainless Steels are based on an 18% chromium, 8% Nickel alloy, commonly known as 18/8 stainless. The chromium and Nickel contents can be increased to further improve corrosion resistance and other elements, such as molybdenum, can be added, again to improve corrosion resistance. Similarly the Nickel content can be varied to give a range of mechanical properties, due to differing work hardening rates.

This has led to the familiar group of 300 Series Alloys, which were developed to exploit the full range of possibilities available when altering alloying levels. In the fully annealed condition they are essentially non-magnetic but cold working of the less alloyed grades will induce structural changes leading to increased levels of magnetism.

This group is so named because the alloys have the same structure as iron at room temperature. These alloys are based on a minimum chromium level of 11% and contain no Nickel but provide fair corrosion resistance and good formability at low cost. Chromium levels can be increased to improve corrosion resistance but these alloys have low work hardening rates, do not develop high strength from cold working and remain magnetic in all tempers. Ferritic Stainless Steels are the ideal solution for high volume applications, particularly in domestic environment where moderate corrosion resistance is acceptable. Good examples include hinges and stays in the UPVC window hardware industry.

Martensitic Stainless Steels are similar to plain Carbon Steels that are austenitised, hardened by quenching and tempered to give improved toughness and ductility. These alloys are magnetic and are generally formed in the annealed condition, then heat treated. The strength generated by heat treatment is dependent on the carbon content of the alloy; increasing carbon increases strength but at the expense of toughness and ductility. Martensitic Stainless Steel is a low cost stainless metal strip and was the first to be commercially developed and is used as cutlery steel. It is also used for the manufacture of complex spring shapes needing a soft steel for forming.

Precipitation Hardened Alloys are part of the Stainless Steel family, possessing a higher carbon content compared to Ferritic alloys, enabling them to harden through air, oil or water cooling, improving their strength. This alloy grade offers manufacturers many superior properties, combining high work hardening rates and very high strengths, superior fatigue properties, good corrosion resistance, and minimum distortion when heat treated. These properties, in addition to good formability, make 17-7PH ideal for aerospace applications, spring manufacturing and surgical instruments.

AVAILABLE GRADES

Austenitic 201, 301, 304L, 304, 305, 320, 321, 347, 316, 316L, 316Ti, 904L

Ferritic 410S, 430, 430L, 430Ti (439), 441, 444

Martensitic 410, 420, 431

Precipitation Hardening Stainless Steel 17/4PH, 17/7PH

Duplex & Super Duplex 309, 310

Other grades available by request

Duplex Stainless Steel strip has a combined Austenitic-Ferritic structure. These magnetic alloys are not hardenable by heat treatment, but offer many added advantages over other Stainless Steels, with higher annealed strengths, stress relaxation and fatigue properties, superior tensile strength, greater corrosion and pitting resistance and lighter weight. Duplex Stainless Steel strip can be strengthened by cold work and has lower thermal expansion and higher heat conductivity than austenitic steel strip. With a lower Nickel content than other Stainless Steels, the material cost is also reduced. Super Duplex has a higher chromium content than standard Duplex, offering further mechanical and corrosion resistance.

Stainless Steel Features

	EURO.	ASTM	NAME	FEA	TURES	and the second of the second section and the second second section is a second section of the second section a
	NAME	AISI	UNS	Key Features	Key Markets	Applications
				AUSTENITICS		
	1.4310	301 S 30100 corrosion re		An Austenitic Nickel-Chrome alloy with high toughness and corrosion resistance. In annealed form it is non magnetic, but develops magnetic properties through cold working. It has good surface brightness, making it useful for decorative applications.	Aerospace, Automotive, Chemical, Transport, Springs & Pressings, Decorative	Aircraft Structural Parts, Automotive Parts Including Trims And Wheel Covers Springs, Pressings, Connectors, Gaskets, Watch Parts, Chemically Etched Components, Building Tools, Decorative Purposes, Tableware, Appliances
	1.4301	304	S 30400	The most common grade of Stainless Steel due to its versatility. Excellent corrosion resistance in a wide range of environments, excellent formability and welding, superior deep drawing properties.	Food, Springs & Pressings	Flexible Tube, Pipes, Domestic Appliances, Gaskets, Kitchen Wares, Springs, Thread Fasteners, Sinks, Computer And Monitor Parts, Battery Cases, Window Spacers, Architectural Panels, Heat Exchangers
	1.4307	304L	S 30403	Low Carbon version of 304, ideal for more corrosive environments. Greater resistance to intergranular corrosion in welds. Moderate pitting corrosion resistance.	Springs & Pressings	Water Tubes For Electric Heaters, Bellows, Pressings, Deep Drawn Parts, Expanded Mesh
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.4303	305	S 30500	An Austenitic Stainless Steel with good corrosion resistance. It has capability for polishing and electroplating, as well as soldering and welding. It has good Cold Workability.	Electronic, Stationary	Electronic Parts, Deep Drawn Parts, Battery Cases, Pens
	1.4833			Automotive, Energy , Chemical, Cement	Gas Burner Radiators, Electrical Heating Element Tubes, Energy Conversion Plants, Furnace Parts, Heat Exchangers, Automotive Exhausts	
	1.4845	310/310S	S 31008	A Refractory Austenitic Stainless Steel, which has high toughness and excellent high-temperature oxidation resistance due to its high Chromium and Nickel content.	Petrochemical Industry, Food Industry	Nuclear Thermal Insulation, Furnaces, Air Heaters, Food Processing Components
	1.4401	316	S31600	Molybdenum added to increase corrosion resistance, with higher resistance to pitting and crevice corrosion in chloride environments than other common austenitic grades. Excellent welding and formability characteristics. Good for applications requiring continuous work in a temperature range of 450 and 850C.		
	1.4404	316L	S 31603	The Low Carbon Version of 316, better for uses at sensitization temperatures, such as welding, as intergranular corrosion resistance is increased. Slightly more corrosion resistant than 1.4401. More heavily alloyed. Excellent corrosion resistance in Food, Beverage and	Chemical, Petrochemical, Marine, Food	Bursting Discs, Seals, Bellows, Gaskets, Expansion Joints, Explosion Panels, Tubes, Diaphragms, Heat Exchangers, Coastal Architectural Features, Food And Laboratory Benches, Threaded Fasteners, Springs, Boat Fittings, Chemical Containers
	1.4571	320/ 316Ti	S 31635	Agricultural sectors. Titanium-stabilised version of 316, prevents intergranular corrosion of welded structures by preventing formation of Chromium Carbide. The addition of Titanium offers improved mechanical strength at temperatures above 600C.		
			S 32100	Titanium added to reduce Chromium Carbide precipitation, giving increased protection against intergranular corrosion. Combines high strength, resistance to scaling and phase stability with resistance to subsequent aqueous corrosion, excellent welding and forming capabilities. Ideal for applications in the temperature range of up to 900°C.	Aerospace, Automotive	Heating Systems, Welded Tubes, Gaskets, Profile Pipes, Expansion Joints, Seals, Bellows Gaskets, Furnace Parts, Honeycomb Seals, Thermal Insulation, Tube, Flexible Tube, Diaphragms,
			S 34700	Additions of Niobium and Titanium give excellent resistance to intergranular corrosion.		Aerospace Components Including Exhaust Manifolds
	1.4539	904L	N 08904	A low Carbon Austenitic Stainless Steel, alloyed with Copper to improve resistance in acidic conditions. As it is alloyed with expensive components, Molybdenum and Nickel, it has become largely replace by lower cost Duplex alloys. 904L is non-magnetic, and offers excellent formability, toughness and weldability.	Oil & Gas, Paper & Pulp	Seals, Gaskets And Shims, Thermal Insulation Panels, Distillation, Column Packing

Features

EURO.			FEA	TURES					
NAME	AISI	UNS	Key Features	Key Markets	Applications				
			FERRITICS						
1.4016	1.4016 430 S 43000		1.4016 430 S 430		1 4016 430 \$ 43000 aggi		Good Formability. Good corrosion resistance in moderately aggressive media and good oxidation resistance at elevated temperatures. It is not susceptible to stress cracking corrosion.	Automotive, Chemical Etching	Automotive Trim, Domestic Appliance Panels, Chemically Etched Components, Paint Brushes, Gaskets, Lights Bulbs, Hose Clamps, Oil Refinery Components In Acidic Environments
1.4113	434	S 43400	A low Carbon Ferritic Stainless Steel with additions of Molybdenum. Corrosion resistance is better than 430. Excellent polishing characteristics.	Automotive, Architectural	Automotive Trim, Dishwashers, Restaurant Equipment, Nitric Acid Plant Equipment				
77 16 20			MARTENSITICS						
1.4006	410	S 41000	A low hardness Martensitic Stainless Steel which is corrosion resistant in water and steam. Not considered to be weldable, although it is possible with thin gauge material.	Medical, Mechanical	Stainless Steel Springs, Valves, Axles, Surgical Instruments, Wear Resistant Surfaces				
1.4028	420	S 42000	Higher hardness than 410. Useful for applications in which wear and abrasion resistance is important.	Springs & Pressings, Printing Industry, Mechanical	Cutlery, Machine Knives, Scissors, Measuring Tools, Springs, Mechanical Parts				
1.4122	-	-	The most corrosion resistant of the common Martensitic grades. Medium-High hardness. Very good wear resistance and mechanical properties. Medical, Food, Mechanical		Surgical Instruments, Pumps, Mechanical Parts, Food Processing				
V			PRECIPITATION HARDENIN	G					
1.4542	-	17-4PH	Good combination of corrosion resistance and excellent mechanical properties. The corrosion resistance is very similar to 1.4301, but significantly more resistant to Stress Corrosion Cracking. It is susceptible to Crevice Corrosion in stagnant sea water.	Aerospace, Marine, Sport And Leisure, Mechanical, Pulp And Paper Industry	Pump Components, Mechanical Parts, Golf Clubs, Seals				
1.4568	-	17-7PH	Good formability and strength. Corrosion resistance is generally higher than the Martensitic Stainless Steels and 17-4PH but lower than 304. The formability is comparable to 301.	Springs & Pressings	Stainless Steel Springs, Diaphragms, Encapsulated Bellows, Strain Gauges				
			DUPLEX						
1.4062	2202	S 32202	A dual-phase Austenitic-Ferritic Stainless Steel. Offers elevated yield strength, good resistance to stress corrosion cracking and good mechanical strength. Suitable for cold forming.	Pulp And Paper Industry, Water, Food, Construction, Automotive	Crash barriers, Desalination Cladding of paper machines, Oil tanks Juice tanks, Automotive Structures				
1.4462	2205	S 32205	A dual-phase Austenitic-Ferritic Stainless Steel. Achieves high yield strength while maintaining sufficient ductility. The corrosion resistance is comparable to grades 304 and 301. Good weldability and formability. High Design Strength, allowing for a reduction in section thickness.	Automotive, Chemical, Transport,	Pulp and Paper Processing, Desalination,				
1.4362	2304	S 32304	A dual-phase Austenitic-Ferritic Stainless Steel with low carbon content. Good resistance to corrosion and offers much higher proof strength as Austenitic Stainless Steels. Other properties include good weldability and good toughness.	Springs & Pressings, Decorative	Automotive Trim, Offshore Platforms				
1.4410	2507	S 32750	A dual-phase Austenitic-Ferritic Stainless Steel. High resistance to all corrosion, high mechanical strength and good weldability. Suitable for service in highly corrosive conditions.	Automotive, Chemical, Marine	Pulp and Paper Processing, Desalination, Automotive Trim, Seawater Systems, Heat exchangers				
1.4662	(LDX) 2404	S 82441	A Duplex Stainless Steel with high contents of Chromium and Nitrogen. This combination gives the material high corrosion resistance and a higher mechanical strength than other common Duplex materials. Other properties include good fatigue resistance and good weldability.	Automotive, Chemical, Marine, Energy, Architectural	Structural Components, Piping Systems, Pulp and Paper Processing, Oil ad Gas, Water Treatment.				
1.4162	(LDX) 2101	S 32101	A low-alloyed, general purpose, Duplex Stainless Steel. Offers good general corrosion resistance, high sulphide and chloride stress corrosion resistance, good strength and weldability.	Chemical, Water Treatment, Paper & Pulp	Chemical Processing Vessels and Piping. Pulp and Paper Mill Equipment, Water Treatment Tanks.				

Stainless Steel Chemical Properties

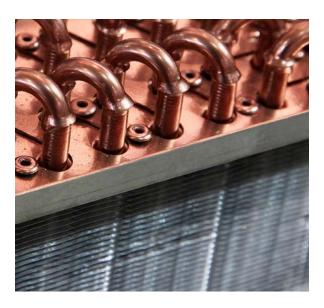
						AL	JSTENITIC	s					
URO.		STM AME	TYPICAL CHEMICAL COMPOSITION %										
IAME		UNS	С	Si	Mn	Р	S	Cr	Мо	Ni	N	Cu	Other
1.4310	301	S 30100	0.05 - 0.15	1.00 - 2.00	2.00	0.045	0.015 - 0.030	16.00 - 19.00	0.80	6.0 - 9.5	0.10	-	-
1.4301	304	S 30400	0.07	1.00	2.00	0.045	0.030	17.50 - 19.50	-	8.0 - 10.5	0.10	-	-
1.4307	304L	S 30403	0.03	1.00	2.00	0.045	0.030	17.50 - 19.50		8.0 - 12.00	0.10	-	-
1.4303	305	S 30500	0.06 -0.12	1.00	2.00	0.045	0.030	17.00 - 19.00	-	10.50 - 13.00	0.10	-	-
1.4833	3098	S 30908	0.08 - 0.15	1.00	2.00	0.045	0.015 - 0.030	22.00 - 24.00	-	12.00 - 15.00	0.11	-	-
1.4845	310/ 310S	S 31008	0.08 - 0.10	1.50	2.00	0.045	0.015 - 0.030	24.00 - 26.00	-	19.00 - 22.00	0.11	-	-
1.4401	0.00		0.07 - 0.08	1.00	2.00	0.045	0.030	16.50- 18.50	2.00 - 3.00	10.00 - 14.00	0.10	-	-
1.4436	316	S31600	0.05 -0.08	1.00	2.00	0.045	0.030	16.00 - 18.50	2.50 - 3.00	10.50 - 14.00	0.10	-	-
1.4404	- 316L	S 31603	0.03	1.00	2.00	0.045	0.030	16.00 - 18.50	2.00 - 3.00	10.00 - 14.00	0.10	-	-
1.4571	316Ti	S 31635	0.08	1.00	2.00	0.045	0.030	16.00 - 18.50	2.00 - 3.00	10.00 - 14.00	-	-	Ti 5 x
1.4541	321	S 32100	0.08	1.00	2.00	0.045	0.030	17.00 - 19.00	-	9.00 - 12.00	0.10	-	Ti 5 x
1.4550	347	S 34700	0.08	1.00	2.00	0.045	0.015	17.00 - 19.00	-	9.00 - 13.00		-	Nb = 10 to max
1.4539	904L	N 08904	0.02	0.70	2.00	0.030 - 0.045	0.010 - 0.035	19.00 - 23.00	4.00 - 5.00	23.00 - 28.00	0.10 - 0.15	1.00 to 2.00	
						F	ERRITICS						
			С	Si	Mn	Р	S	Cr	Мо	Ni	N	Cu	Othe
1.4016	430	S 43000	0.08 - 0.12	1.00	1.00	0.040	0.030	16.00 - 18.00	-	0.75	-	-	-
1.4113	434	S 43400	0.08 - 0.12	1.00	1.00	0.040	0.030	16.00 - 18.00	0.75 - 1.40	-	-	-	-
						MA	RTENSITIO	cs					
	1	i	С	Si	Mn	Р	S	Cr	Мо	Ni	N	Cu	Othe
1.4006	410	S 41000		1.00	1.00 - 1.50	0.040	0.030	11.50 - 13.50	-	0.75	-	-	-
1.4028	420	S 42000	0.26 - 0.35	1.00	1.50	0.040	0.030	12.00 - 14.00	-	-	-	-	-
1.4122	-	-	0.33 - 0.45	1.00	1.50	0.040	0.030	15.50 - 17.50	0.80 - 1.30	1.00	-	-	-
						PRECIPITA	ATION HAP	RDENING					
	ı	1	С	Si	Mn	Р	S	Cr	Мо	Ni	N	Cu	Othe
1.4542	-	17-4PH	0.07	0.70	1.50	0.040	0.030	15.00 - 17.00	0.60	3.00 - 5.00	-	3.0 - 5.0	Nb: 5 C to 0.4
1.4568	-	17-7PH	0.09	0.70	1.00	0.040	0.015	16.00 - 18.00	-	6.50 - 7.80	-	-	AI: 0.70 - 1
							DUPLEX						
	,		С	Si	Mn	Р	S	Cr	Мо	Ni	N	Cu	Othe
1.4062	2202	S 32202	0.03	1.00	2.00	0.040	0.010	21.5 - 24.0	0.45	1.00 - 2.90	0.16 - 0.28	-	-
1.4462	2205	S 32205	0.03	1.00	2.00	0.035	0.015	21.0 - 23.0	2.50 - 3.50	4.50 - 6.50	0.10 -0.22	-	-
1.4362	2304	S 32304	0.03	1.00	2.00	0.035	0.015	22.0 - 24.0	0.10 - 0.60	3.50 - 5.50	0.05 - 0.20	0.10 - 0.62	-
1.4410	2507	S 32750	0.03	1.00	2.00	0.035	0.015	24.0 - 26.0	3.00 - 4.50	6.0 - 8.0	0.24 - 0.35	-	-
1.4662	(LDX) 2404	S 82441	0.03	0.70	2.50 - 4.00	0.035	0.005	23.0 - 25.0	1.0 - 2.0	3.0 - 4.50	0.20 - 0.30	0.10 - 0.80	-

Please contact the Knight Group Sales Team with your requirements.

Stainless Steel Mechanical Properties

100	TYPICAL MECHANICAL PROPERTIES											
	EURO. NAME	ASTM AISI	NAME UNS	Proof Strength 0.2% Min (N/mm2)	Tensile Strength	Elong. % Min. (50mm Gauge Length)	Hardness Max (VPN)	Surface Finish				
		AUSTENITICS										
	1.4310	301	S 30100	195	500 - 750	40	242	2B & 2R				
	1.4301	304	S 30400	190	500 - 700	45	226	2B & 2R				
52	1.4307	304L	S 30403	175	500 - 700	45	226	2B & 2R				
3115	1.4303	305	S 30500	190	500 - 700	45	226	2B & 2R				
11.22	1.4833	309 S24	S 30908	210	500 - 700	33	192	2B & 2R				
F-455	1.4845	310/310S	S 31008	210	500 - 700	33	192	2B & 2R				
1,4805 (5)	1.4401 1.4436	316	S31600	200	500 - 700	40	226	2B & 2R				
はおがた	1.4404 1.4432	316L	S 31603	200	500 - 700	40	226	2B & 2R				
1000	1.4571	320	S 31635	200	500 - 700	40	226	2B & 2R				
0.68	1.4541	321	S 32100	190	500 - 700	40	226	2B & 2R				
100	1.4550	347	S 34700	205	510 - 740	40	242	2B & 2R				
	1.4539	904L	N 08904	230	530 - 730	35	242	2B & 2R				
SE					FERRITICS	6						
9	1.4016	430	S 43000	240	400 - 630	20	200	2B & 2R				
V	1.4113	434	S 43400	280	440 - 660	18	200	2B & 2R				
Ŋ.					MARTENSIT	cs						
	1.4006	410	S 41000	450	650 - 850	15	231	2B & 2R				
	1.4028	420	S 42000	650	850 - 1000	10	258	2B & 2R				
	1.4122	-	-	550	750 - 950	12	280	2B & 2R				
14 27 12				PI	RECIPITATION HA	RDENING						
	1.4542	-	17-4PH	520 - 1000	800 - 1270	10 - 18	380	2R				
9	1.4568	-	17-7PH		max. 850		268	2R				
A.E					DUPLEX							
	1.4062	2202	S 32202	380	650 - 900	30	305	2B & 2R				
20	1.4462	2205	S 32205	450	650 - 880	25	284	2B & 2R				
1	1.4362	2304	S 32304	400	600 - 830	25	274	2B & 2R				
and defi	1.4410	2507	S 32750	530	730 - 950	25	305	2B & 2R				
米和服务	1.4662	(LDX) 2404	S 82441	450	650 - 900	25	305	2B & 2R				
10	1.4162	(LDX) 2101	S 32101	400	650 - 900	25	305	2B & 2R				

Titanium


Titanium has been a known element for many years but it is only in the last 50 years or so that it has gained importance. The rapid growth of the Titanium industry has been due to the versatility of the metal and its alloys and their outstanding strength to weight ratios. The mechanical properties of commercially pure Titanium grades vary considerably with small changes in oxygen, nitrogen, hydrogen and carbon. The properties of high strength, light weight and exceptional corrosion resistance have led to traditional applications in chemical process plant, aerospace structures, jet engine components and medical implants and prostheses, nuclear power plants, food processing plants, oil refinery heat exchangers. Commercially Pure Titanium grades have outstanding resistance to seawater and salt-water attack and are used in desalination plant, seawater cooled condensers and other marine related applications.

Titanium exists in two crystallographic forms and its alloys can be classified into three categories:

- alpha
- alpha/beta
- beta alloys

	TITANIUM STOCK RANGE										
T VD=	COIL STOCK	(RANGE	WIRE STO	CK RANGE							
TYPE	Thickness (mm)	ness (mm) Width (mm) Round		Shaped							
ALPHA											
Grade 1											
Grade 2	0.025 - 3.00 mm	3 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area							
Grade 3		3 - 1000									
Grade 4											
		ALPHA/B	ETA								
Ti 6Al-4V (Grade 5)	0.025 - 3.00 mm	3 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area							
Ti 3Al 2.5V (Grade 9)	0.025 - 3.00 mm	3 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area							
	BETA										
21S	0.025 - 3.00 mm	3 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area							
	Other specifications can be supplied upon request. Please contact us with your requirements.										

AVAILABLE GRADES

Alpha

Grade 1, Grade 2, Grade 3, Grade 4

Alpha/beta

Grade 5 (Ti 6Al-4V), Grade 9 (Ti 3Al 2.5V)

Beta 21S

Pure Titanium has an alpha structure but transforms to a beta form when heated above 882°C. The addition of alloying elements influences this transformation and many alloys have been developed where beta phase is retained at room temperature, thus giving a material containing alpha and beta phases. The relative amounts of these phases give rise to variations in properties such as ductility, weldability and ease of forming Titanium alloy strip is used for demanding applications such as static and rotating gas turbine engine components. Some of the most critical and highly stressed civilian and military airframe parts are also made of Titanium alloy strip. Commercially pure, or un-alloyed Titanium strip has outstanding corrosion resistance making it the preferred material for many applications in chemical process industries.

Features

	TITANIUM FEATURES										
TYPE	Key Feat	ures	Key Markets	Applications							
ALPHA											
Grade 1	Excellent corrosion resistance, maximum formability, limited strength										
Grade 2	Very Good formability, improved strength	Not hardenable	treatment. Chemical	Heat Exchangers, Condenser, Tubing, Valves,							
Grade 3	Good formability and increased strength over Grades 1 and 2	by heat treatment. Excellent weldability		Pumps, Banding							
Grade 4	Highest strength of commercially pure grades, but sufficient ductility for moderate forming.										
		ALPHA/BETA									
Grade 5 (Ti 6Al-4V)	High strength to weight resistance, can be heat tree hardened by cold work,	ated, but can only be	Medical, Aerospace, Chemical, Marine, Oil and Gas	Aerospace structural components, Turbine blades, discs and rings, medical implants and devices, sports equipment							
Grade 9 (Ti 3Al 2.5V)	May be strengthened l Hardenable by heat treatme		Aerospace	Honeycomb material for aircraft, seamless tubing, mechanical fasteners							
	BETA										
218	Substantial strength to wei oxidation resistance, elevater and creep strength. Good weldability. Extremely resistan	d temperature strength cold formability and	Aerospace	Engine exhaust plug, nozzle assemblies.							

	TITANIUM CHEMICAL PROPERTIES												
TYPE		TYPIC	AL CHE	MICAL	СОМЕ	POSITIO	ON %						
	С	N	0	Н	Fe	Ti	Others						
	ALPHA												
Grade 1	0.1	0.03	0.18	0.015	0.2	Balance	-						
Grade 2	0.1	0.03	0.25	0.015	0.3	Balance	-						
Grade 3	0.1	0.05	0.35	0.015	0.3	Balance	-						
Grade 4	0.1	0.05	0.4	0.015	0.5	Balance	-						
			ALPHA/	BETA									
Grade 5 (Ti 6Al-4V)	0.08 max	0.05 max	0.2 max	0.125 max	0.4 max	Balance	Al 5.5 - 6.75 V 3.5 - 4.5						
Grade 9 (Ti 3Al 2.5V)	0.05	0.02	0.12	0.015	0.3	Balance	Al 2.5 - 3.5 V 2.0 - 3.0						
			BE1	Α									
21S	0.05 max	0.050 max	0.11 - 0.17	0.02 max	0.400 max	Balance	Al 2.5 - 3.5 Si 0.15 - 0.25 Mo: 14.0 - 16.0 Nb: 2.4 - 3.2						

TITANIU	JM MECHAN	IICAL PRO	PERTIES									
ТҮРЕ	Proof Strength 0.2% Min (N/mm2)	Tensile Strength	Elong. % Min. (50mm Gauge Length)									
ALPHA												
Grade 1	170 - 240	240 - 330	24									
Grade 2	275 - 345	345 - 430	20									
Grade 3	380 - 450	450 - 520	18									
Grade 4	480 - 580	550 - 660	15									
	ALPH <i>A</i>	VBETA										
Grade 5 (Ti 6Al-4V)	862	931	10									
Grade 9 (Ti 3Al 2.5V)	520 - 585	620 - 690	15									
	ВЕ	TA										
21S	A	vailable on Requ	est									

Nickel Alloys

These materials are characterised by high density, offering low electrical resistivity, high thermal conductivity and high magnetic properties. In addition, commercially pure Nickel strip offers excellent

corrosion resistance in many chemical media, especially some strong alkalis. Commercially pure

Nickel strip cannot be hardened by heat treatment. However, metal strip can be produced by cold

Nickel is a very versatile metal, with ability to withstand a wide variety of severe operating conditions, including: corrosive environments, high temperatures, high stresses, and combinations of these factors. This has resulted in the extensive commercial use of both Nickel strip and Nickel-base alloy strip and although very useful in its commercially pure forms, it is its ability to alloy with a range of metals, which has brought it to the forefront of modern metallurgy. A range of highly alloyed materials has developed to provide high strength and excellent corrosion resistance, particularly at elevated temperatures, to meet specific requirements in many different types of environment.

Commercially **Pure Nickels**

Water said

Nickel-Copper allovs have been found possess excellent corrosion resistance reducing chemical environments and also

seawater, i.e. marine environments, where they are commonly used. They have good ductility and can be readily fabricated.

rolling to a range of strengths.

Nickel-Copper Alloys

> This group of alloys led the way to higher strength and resistance to elevated temperatures. Initially developed for use in the processing chemical industry where carburising environments and elevated temperatures were too severe

Nickel-Chromium & Nickel-**Chromium-**Iron Alloys

> Offering good resistance, these alloys have found extensive use in the petrochemical

Iron-Nickel-Chromium

> lighting industry where glass to metal seals are very important. they exhibit good thermal conductivity.

Alloys (800 Series) for Stainless Steels. oxidation processing

industry. The 800 series offer excellent strength at high temperature. A range of alloys developed for use in conjunction with the

AVAILABLE GRADES

Commercially Pure Nickels 200, 201

> **Nickel-Copper Alloys** 400

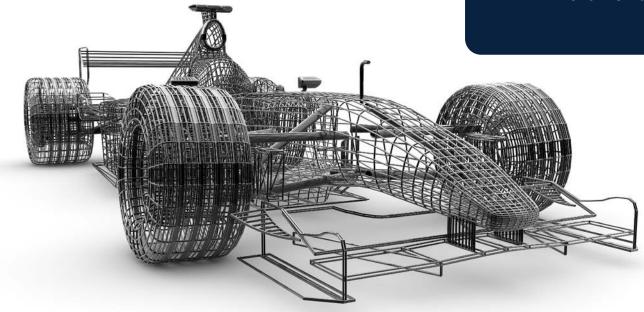
Nickel-Chromium & **Nickel-Chromium-Iron Alloys** alloy K500, alloy X, C22, alloy C2000, alloy 600, alloy 601, alloy 625, alloy C 276, alloy 718, alloy X750

Iron-Nickel-Chromium Alloys (800 Series) alloy 800, alloy 825

> **Controlled Expansion Alloys** 29/18

Controlled **Expansion Alloys**

Types


	NICKEL ALLOYS STOCK RANGE										
COIL STO	CK RANGE	WIRE STOCK RANGE									
Thickness (mm)	Width (mm)	Round	Shaped								
COMMERCIALLY PURE NICKELS											
0.025 - 2.5	2 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area								
NICKEL-COPPER ALLOYS											
0.025 - 2.5	2 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area								
NICKE	NICKEL-CHROMIUM & NICKEL-CHROMIUM-IRON ALLOYS										
0.025 - 2.5	2 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area								
IF	RON-NICKEL-CHROMIU	IM ALLOYS (800 SERIE	S)								
0.025 - 2.5	2 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area								
	CONTROLLED EX	PANSION ALLOYS									
0.025 - 2.5	3 - 610	0.1 – 10.00 mm dia	Upto 45 mm2 area								
C		ne supplied upon request th your requirements.	i.								

"Nickel is widely used in over 300,000 products for consumer, industrial, military, transport, aerospace, marine and architectural applications"

www.nickelinstitute.org

Nickel Alloys Features

				100 193		_						
ı						NICK	EL ALLOYS FEATURES					
	COMMON NAME	TRADE MARKED METALS	EURO. NAME	ASTM AISI	NAME UNS	AMS	Key Features	Key Markets	Applications			
ı						СОММ	ERCIALLY PURE NICKEL					
	alloy 200	-	NA 11	B 162	N02200		Commercially pure Nickel with excellent mechanical properties and excellent corrosion resistance, particularly to caustic alkalis and de-aerated acid. High thermal and electrical conductivity. Can be shaped through all hot and cold working practices.	Aerospace, Defence, Food and Beverage, Automotive, Chemical	Bursting Discs, Explosion Panels, Battery Contacts, Food Processing, Chemical Containers, Aerospace and Defence Components			
	alloy 201	-	NA12	B 162	N02201	5553	Low carbon version of commercially pure alloy 200. Generally specified for temperature above 315°C. It does not suffer embrittlement due to the low carbon content. It is particularly suited for spinning and cold forming.	Automotive, Chemical, Aerospace, Electronics	Electronic Components, Aerospace Components, Bursting Discs			
						NIC	KEL-COPPER ALLOY					
	alloy 400	MONEL® alloy 400*	NA13	B 127	N04400	4544	A solid-solution alloy only hardenable through cold-working. High strength and toughness over a large temperature range. Excellent corrosion resistance, particularly in sea water.	Aerospace, Oil & Gas, Marine, Chemical	Bellows, Heat Exchangers, Propellers, Shafts, Fasteners, Pumps, Valves			
ı	NICKEL-CHROMIUM & NICKEL-CHROMIUM-IRON ALLOYS											
	alloy K-500	MONEL® alloy K500*	NA18	-	N05500	4676	Precipitation hardened non- magnetic alloy. Greater strength and hardness than Monel 400, whilst maintaining excellent corrosion resistance. High fatigue strength in seawater.	Oil & Gas, Chemical, Power Generation, Marine, Medical, Electronics	Propellers, Fasteners, Gyroscopes, Medical blades, Pump Shafts, Drill Collars			
	alloy X	-	-	B 435	N06002	5536	Additional amounts of chromium and iron provide strength and resistance to corrosion and oxidisation up to 1170°C	Aerospace, Automotive, Chemical,	Aerospace components, Honeycomb Seals, Combustion Liners, Turbine Engine Components			
	C22	HASTELLOY® C22®**	-	B 575	N06022	-	A versatile Nickel Alloy with superior corrosion resistance and weldability	Chemical, Nuclear, Environment & Energy Engineering, Oil & Gas, Waste Management	Expansion Bellows, Industrial equipment, Chemical Processing.			
	-	NIMONIC® alloy 75*	-	-	N06075	-	Medium strength at high operating temperatures. Good Weldability. Due to good ductility and malleability in the annealed condition it can be used in cold deformation, large reductions can be made without rupture.	Aerospace, Thermal Engineering	Turbine blades, Furnace Components, Heat treatment equipment			
	alloy C2000	HASTELLOY® alloy C 2000**	-	B 575	N06200	-	The addition of Copper enables resistance to an extensive range of corrosive chemicals, including many acids. Easy to form and weld. Excellent resistance to stress corrosion cracking.	Chemical	Heat Exchangers, Reactors			
	alloy 600	INCONEL® alloy 600*	NA14	B 168	N06600	5540	Resists oxidation up to 1200°C, good corrosion resistance. High Nickel content makes it highly resistant to chloride-ion stress corrosion cracking. It is not Precipitation Hardenable. Can be hardened and strengthened through cold work. Can operate from cryogenic temperatures to above 1095°C. Readily weldable by conventional processes.	Chemical, Nuclear, Aerospace, Heat Treating, Automotive, Oil & Gas, Environment & Energy Engineering	Flexible Tubing, Furnace equipment, Insulation blankets, Chemical and Food Processing, Seals			

		-	$\mathbf{H} =$				0 40 0	
		NICKE	L-CHR	оміим	& NIC	KEL-CHROMIUM-IRON A	LLOYS CONTINUED	
alloy 601	INCONEL® alloy 601*	-	B 168	N06601	5870	Lower Nickel content than alloy 600, with Aluminium and silicon additions for exceptional resistance to oxidation at high temperatures. Good mechanical strength, easily formed, machined and welded. It has high tensile strength at room temperature, and retains much of it at elevated temperatures. Alloy 601 is not embrittled by long exposures to elevated temperatures, retaining good impact strength. Good creeprupture strength.	Chemical, Thermal Engineering, Aerospace, Power Generation, Petrochemical, Automotive	Petrochemical Processing Equipment, Furnace Equipment, Gas Turbine Components, Gaskets, Condenser Tubes, Insulating Cans
alloy 625	INCONEL® alloy 625*	NA21	B 443	N06625	5599	High temperature, high strength alloy, tougher than alloy 600 due to increased Molybdenum and Niobium content. Good Creep and Rupture strength. Higher oxidisation resistance and excellent resistance to aqueous corrosion, chloride pitting and crevice corrosion cracking. It is resistant to caustics and seawater as well as being immune to chloride ion stress corrosion cracking. Excellent weldability.	Automotive, Chemical, Marine, Aerospace, Power Generation, Nuclear	Honeycomb, Seals, Bellows, Diaphragms, Springs, Heat Exchangers, Aircraft Exhausts, Marine Components, Compressor Vanes
-	HAYNES® 214®**	-	-	N07214	-	Excellent corrosion and oxidisation resistance at high temperatures. Ideally suited to high temperature, low stress oxidizing environments.	Aerospace, Automotive, Industrial Heating	Honeycomb, Seals, Catalytic Converters, Flame Hoods, Rotary Calciners
alloy C 276	HASTELLOY® C 276®**	-	-	N10276	-	Outstanding universal corrosion resistance. High Chromium and Molybdenum contents protect against oxidising and nonoxidising acids.	Chemical, Marine, Aerospace, Oil & Gas, Environment & Energy Engineering, Pharmaceutical	Diaphragms, Marine Engineering, Chemical Processing, Pulp and Paper Production, Ducts, Heat Exchangers
alloy 718	INCONEL® alloy 718*	-	B 670	N07718	5596	Precipitation hardened, age hardenable, high strength alloy. Good corrosion resistance and highly resistant to chloride and sulfur stress corrosion cracking. Titanium and niobium additions overcome strain age cracking problems in welding to provide good weldability.	Oil & Gas, Nuclear, Aerospace, Defense, Automotive	High Temperature Springs, Bellows, Seals, Valves, Fasteners, Mandrels, Gaskets, Clamps
alloy X750	INCONEL® alloy X750*	-	B 637	N07750	5598	Precipitation hardenable, excellent strength and corrosion resistance up to 704°C and useful strength up to 982°C and excellent relaxation resistance. Ideal for springs operating at high temperatures.	Oil & Gas, Nuclear, Aerospace, Power Generation, Automotive	High Temperature Springs, Diaphragms, Gas Turbines, Jet Engines
				IR	ON-NI	CKEL-CHROMIUM ALLOY	'S	
-	INCOLOY® alloy 800*	NA15	B 409	N08800	5871	Excellent corrosion resistance, heat resistance, strength and stability at high temperatures. Resists stress corrosion cracking and oxidisation at high temperatures. Used in applications in which resistance to Stress Corrosion Cracking is required. 800H and 800HT alloys are available with a greater resistance to stress rupture and creep.	Chemical, Thermal Engineering, Food and Beverage, Nuclear, Petrochemical	Electrical heating elements, Heat Exchangers, Furnace Equipment, Petrochemical Process Tubing, domestic appliances
-	INCOLOY® alloy 825*	NA16	-	N08825	-	Additional molybdenum for increased corrosion resistance over alloy 800. Resistant to oxidisation and reducing acids, particularly sulphuric, stress corrosion cracking and pitting.	Chemical, Petrochemical, Oil & Gas, Nuclear, Pollution Control	Tubing, Pipework in Petrochemical, Industry, Seals, Gaskets, Heat Exchangers
			GLA	SS SE	ALING .	ALLOY (CONTROLLED E	XPANSION)	
29/18	-	-	-	K94610	-	Controlled expansion alloy whose co-efficient of expansion decreases with rising temperature and matches the expansion rate of glass	Aerospace, Automotive, Electronics	Microwave Tubes, Transistors, Diodes, Hermetic Seals
Other spec	ifications supplie	d upon reque	est, please	contact us	with your	requirements.		

Other specifications supplied upon request, please contact us with your requirements.

* Trademark of Special Metals

** Trademark of Haynes International, Inc

Nickel Alloys Chemical Properties

ľ						NIC	KEL /	ALLO	YS CH	IEMIC	AL COI	MPOS	ITION						
ı	COMMON	EURO.	ASTM	1 NAME	AMC					TYPI	CAL CH	EMICA	AL CON	/IPOSITI	ON %				
	NAME	NAME	AISI	UNS	AMS	Al	С	Со	Cr	Cu	Fe	Mn	Мо	Ni	Р	Si	S	Ti	Others
ı							CC	ММЕ	RCIAL	LY PL	IRE NIC	CKEL							
	alloy 200	NA 11	B 162	N02200		-	0.15	-	-	0.25	0.4	0.35	-	99.0 min	-	0.35	0.01	-	Mg 0.2 max
	alloy 201	NA12	B 162	N02201	5553	-	0.02	-	-	0.25	0.4	0.35	-	99.0 min	-	0.35	0.01	-	-
								NICK	(EL-C	OPPE	RALLC	PΥ							
	alloy 400	NA13	B 127	N04400	4544	-	0.3	-	-	28.0 - 34.0	2.5	2.0	-	63.0 min	-	0.50	0.024	-	Pb 0.005 max
					NICK	EL-C	HRON	IIUM 8	& NIC	(EL-C	HROM	IUM-II	RON A	LLOYS	5				
	alloy K500	NA18		N05500	4676	2.30 - 3.15	0.18	-	-	27.0 - 33.0	2.0	1.50	-	63.0 min	-	0.50	0.01	0.35 - 0.85	-
	alloy X		B 435	N06002	5536	-	0.05 - 0.15	0.5 - 2.5	20.5 - 23.0	0.5	17.0 - 20.0	1.00	8.0 - 10.0	Balance	0.04	1.00	0.03	0.15	W 0.2 - 1.0
	C22		B 575	N06022		-	0.015	2.5	20.0 - 22.5	-	2.0 - 6.0	0.50	12.5 - 14.5	Balance	0.02	0.08	0.02	-	W 2.5- 3.5 V 0.35 max
	alloy C2000		B 575	N06200		0.50	0.01	2.0	22.0 - 24.0	1.30 - 1.90	3.0	0.50	15.0 - 17.0	Balance	0.025	0.08	0.01	-	
	alloy 600	NA14	B 168	N06600	5540	-	0.15	-	14.0 - 17.0	0.50	6.0 - 10.0	1.00	-	72.0 min	-	0.50	0.015	-	-
	alloy 601	-	B 168	N06601	5870	1.0 - 1.70	0.10	-	21.0 - 25.0	1.00 max	Balance	1.00	-	58.0 - 63.0		0.50	0.015	-	-
	alloy 625	NA21	B 443	N06625	5599	0.40	0.10	1.00 max	20.0 - 23.0	-	5.0	0.50	8.0 - 10.0	58.0 min	0.015	0.50	0.015	0.40	Nb + Ta 3.15 - 4.15
4	alloy C 276			N10276		-	0.01	2.5	14.5 - 16.5	1	4.0 - 7.0	1.00	15.0 - 17.0	Balance	0.04	0.08	0.03	-	V 0.35 max W 3.0 - 4.5
	alloy 718		B 670	N07718	5596	0.20 - 0.80	0.08	1.0	17.0 - 21.0	0.30 max	Balance	0.35	2.80 - 3.30	50.0 - 55.0	0.015	0.35	0.015	0.65 - 1.15	Nb + Ta 4.75 - 5.50; B 0.006
	alloy X750	-	B 637	N07750	5598	0.40 - 1.00	0.08	1.00 max	14.0 - 17.0	0.50	5.0 - 9.0	1.00 max	-	70.0 min	-	0.50 max	0.01	2.25 - 2.75	Nb + Ta 0.70 - 1.20
1							IRON	N-NIC	KEL-C	HRON	MUII A	LLOY	S						
•	alloy 800	NA15	B 409	N08800	5871	0.15 - 0.60	0.10	-	19.0 - 23.0	0.75	Balance	1.50	-	30.0 - 35.0	0.035	1.00	0.015	0.1 - 0.60	Al + Ti 0.30-1.20
	alloy 825	NA16		N08825		0.20	0.05	-	19.5 - 23.5	1.50 - 3.00	Balance	1.00	2.5 - 3.5	38.0 - 46.0	-	0.50	0.03	0.60 - 1.20	-
					GL	ASS S	SEALI	NG A	LLOY	(CON	TROLL	ED E	XPANS	SION)					
	29/18			K94610		0.1	0.02	17.0	0.2	0.2	Balance	0.5	0.2	29.0	-	0.2	-	0.10	Zr 0.10 max

Other specifications supplied upon request, please contact us with your requirements.

* Trademark of Special Metals

** Trademark of Haynes International, Inc

Nickel Alloys Mechanical Properties

								0 000			
		NICKEL A	LLOYS FE	ATURES TYPI	CAL MECHANI	CAL PROPER	TIES				
COMMON	EURO.	ASTM	NAME	AMS	Proof Strength	Tensile	Elong. % Min. (50mm	Hardness			
NAME	NAME	AISI	UNS		0.2% Min (N/ mm2)	Strength	Gauge Length)	Max (VPN)			
			C	OMMERCIALLY	PURE NICKE						
alloy 200	NA 11	B 162	N02200	-	105	380	40	125			
alloy 201	NA12	B 162	N02201	5553	85	350	30	125			
				NICKEL-COP	PER ALLOY						
alloy 400	NA13	B 127	N04400	4544	195	480	35	125			
		NICK	EL-CHRO	AIUM & NICKE	L-CHROMIUM-	IRON ALLOYS					
alloy K500	NA18	-	N05500		Mechanical Properties available on request						
alloy X	-	B 435	N06002	5536	310	723	35	230			
alloy C22	•	B 575	N06022	Mechanical Properties available on request							
NIMONIC® alloy 75*	-	-	N06075		Mechanica	l Properties available	on request				
alloy C2000	•	B 575	N06200		Mechanica	l Properties available	on request				
alloy 600	NA14	B 168	N06600	5540	241	552	30	230			
alloy 601	-	B 168	N06601	5870	230	790	40	230			
alloy 625	NA21	B 443	N06625	5599	414	827	30	250			
HAYNES® 214®**	-	-	N07214		Mechanica	l Properties available	on request				
C 276	-	-	N10276	5750	280	690	40	230			
alloy 718	-	B 670	N07718	5596	552	965	30	270			
alloy X750	-	B 637	N07750	5598	280	700	40	250			
			IRO	N-NICKEL-CHF	ROMIUM ALLO	YS					
alloy 800	NA15	B 409	N08800	5871	210	520	30	200			
alloy 825	NA16	-	N08825	-	240	550	30	200			
		GL	ASS SEAL	ING ALLOY (C	ONTROLLED E	EXPANSION)					
29/18	-	-	K94610	th your requirements	300	500	25	200			

Other specifications supplied upon request, please * Trademark of Special Metals ** Trademark of Haynes International, Inc

Aluminium

Aluminium is the third most abundant resource on the planet and is used widely across many manufacturing sectors due to the ease of machining and forming, requiring low energy input making it highly cost efficient and ideally suited for extrusion work, milling, drilling, cutting, punching and bending in large or small volumes.

Though commonly found within the Construction industry, the physical properties of Aluminium and its alloys make it an essential material for Aerospace, Automotive and Transport sectors. Aluminium has further environmental advantages with zero toxicity and is easily recyclable, without losing its integral properties in the process. The low cost combined with material availability, physical properties and ease of formability makes it an ideal choice for large volume production of beverage packaging but also has wider use within food and beverage production.

Aluminium is a lightweight, soft, ductile metal with non-magnetic and corrosion resistant properties. Aluminium has approximately a third of the density of steel, but this does not impact its strength. It is more durable at lower temperatures and unlike steels will not become brittle, but actually becomes stronger at low temperatures, however, heat above 100°C can affect strength.

A range of surface finishes ranging from dull to reflective, also make Aluminium ideal for decorative features and metal products.

ALUMINIUM STOCK RANGE										
COIL STOCK	RANGE	WIRE STOCK RANGE								
Thickness (mm)	Width (mm)	Round	Shaped							
1000 SERIES PURE ALUMINIUM										
0.01 - 3.0	3 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area							
2000 SERIES ALUMINIUM COPPER ALLOY										
0.01 - 3.0	3 - 1000	0.1 – 10.0 mm dia	Upto 45 mm2 area							
3000 SERIES ALUMINIUM MANGANESE ALLOY										
0.01 - 3.0	3 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area							
5000	SERIES ALUMINI	JM MAGNESIUM AL	LOY							
0.01 - 3.0	3 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area							
6000 SERI	ES ALUMINIUM MA	AGNESIUM + SILICC	N ALLOY							
0.01 - 3.0	3 - 1000	0.1 – 10.00 mm dia	Upto 45 mm2 area							
7	7000 SERIES ALUMINIUM ZINC ALLOY									
Р	lease contact us with	our exact specifications								
Other specifications sup	plied upon request	Please contact us w	ith your requirements.							

Types

1000 Series Pure Aluminium 1000 series are essentially pure Aluminium, offering excellent corrosion resistance, high thermal and electrical conductivity and good formability. 1000 series can also be work hardened, but have relatively low strength.

2000 Series Aluminium Copper Alloy

Jan HA

2000 series metals are alloyed with Copper, providing good mechanical properties that can exceed those of Carbon Steel, but are less corrosion resistant than other alloys. 2000 series can be precipitation hardened to increase strength.

3000 Series Aluminium Manganese Alloy 3000 series are alloyed with manganese and are approximately 20% stronger than pure Aluminium (1000 series) and are particularly resistant to pitting corrosion. It can be work hardened to increase strength.

5000 Series Aluminium Magnesium Alloy 5000 series offers moderate to high mechanical strength, anodises well, with good welding characteristics, good corrosion resistance, particularly in marine environments. 5000 series is not work hardenable.

Thum MA

6000 series is alloyed with both Magnesium and silicon, offering medium mechanical strength, good formability, weldability and machinability in addition to good corrosion resistance. 6000 series can be work hardened.

7000 Series Aluminium Zinc Alloy 7000 series has exceptionally high mechanical strength and is machinable and work hardenable. However it has poor corrosion resistance compared to other Aluminium alloys.

AVAILABLE GRADES

1000 Series Pure Aluminium

2000 Series Aluminium Copper Alloy

3000 Series Aluminium Manganese Alloy

5000 Series Aluminium Magnesium Alloy

6000 Series Aluminium Magnesium + Silicon Alloy

7000 Series Aluminium Zinc Alloy

We can also supply 8000 series and 4000 series on request.

Aluminium Features

			ALUMINIUM FEATURES		
ALLOY NUMBER	EURO. NAME	ASTM NAME UNS	Key Features	Key Markets	Applications
			1000 SERIES (PURE)		
1050	AW-1050	A91050	1050 is a commercially pure Aluminium, which offers high electrical and thermal conductivity alongside excellent corrosion resistance and workability. It is commonly used in the electrical and chemical industries. It has low mechanical strength compared to more significantly alloyed metals. It can be strengthened by cold working, but not by heat treatment. It is the most commonly used Aluminium for general sheet metal work where strength is not essential.	Electrical, Chemical, Universal	Drawn Tube, Chemical Process Pla Equipment, Heat Sinks, General She Metal Work
1050A	AW-1050A	A91050A	1050A provides excellent cold formability, corrosion resistance, very good anodising capability and is easily joined, making it a popular choice for a number of applications. Its reflective aesthetic qualities make it ideally suited for decorative applications. The Chemical composition is similar to Grade 1050, with the addition of Vanadium.	Chemical, Automotive, Food & Beverage, Architectural, Pharmaceutical, Marine, Universal	Chemical Process Plant Equipment Radiator Tubes, Heat Exchangers, Kitchenware, Packaging, Pyrotechn Powder, Architecture Fittings, Reflectors, Cable Sheathing, Automotive Trim, Vessels, Piping, General Sheet Metal Work
1060	AW-1060	A91060	Grade 1060 is very similar to 1050 aluminium alloy, with the difference coming down to 0.1% aluminium by weight. Like other grades in the 1000 series, it has a relatively low mechanical strength, but is noted for having high electrical conductivity, corrosion resistance, excellent welding characteristics and formability. It cannot be hardened by heat treatment.	Electrical, Chemical, Transport, Universal	Universal, Chemical Equipment, Railroad Cars
1070	AW-1070	A91070	Like other alloys in the 1000 series, Grade 1070 is highly resistant to chemical corrosion and has good crack resistance, with a low mechanical strength. It is an excellent brazing alloy and is used for joining other alloys in the 1000 series.	Electrical, Chemical, Construction, Food, Transport, Communication, Universal	General Industrial Components, Electrical Boxes, Heat Exchangers Construction Materials, Communicati Cables, Refrigeration Cabinets
1070A	AW-1070A	A91070A	Grade 1070A, is similar to Grade 1070, with a variation in the Copper and Zinc content, and no Vanadium. This grade has very good corrosion resistance and workability, high thermal and electrical conductivity. It also offers an attractive appearance with high reflectivity, making in suitable for decorative anodising. As with other 1000 series alloys, it has low mechanical strength.	Chemical, Food & Beverage, Automotive, Packaging, Architectural	Packaging, Heat Exchangers, Insulat Foils, Kitchenware, Chemical and Fo Industry Equipment, Automotive Trin Reflectors, Architecture Fittings, Pipi
1100	AW-1100	A91100	Grade 1100 is a low strength aluminum alloy with excellent corrosion resistance, high electrical conductivity and thermal conductivity. This grade is best used for welding, brazing and soldering but has poor machinability. It is soft and ductile so is ideal for applications that require intricate forming. Its attractive finishing capabilities make it a great choice for decorative purposes. It can be strengthened by cold working, but not by heat treatment.	Universal, Chemical, Automotive, Food & Beverage, Decorative	General Sheet Metal Work, Spinning Holloware, Food Handling and Storage, Chemical Storage, Processi Equipment, Reflectors, Kitchenware, Heat Exchanger, Dialand Name Plates, Decorative Parts Giftware, Rivets
1145	AW-1145	A91145	Grade 1145 offers high thermal and electrical conductivity and corrosion resistance. It has good forming and welding capabilities, though is more difficult to machine than most of other aluminum alloys. It is a non-heat treatable alloy but can be strengthened by cold working.	Universal	Sheet, Plate, Foil
1200	AW-1200	A91200	Grade 1200 has very good corrosion resistance and workability, with a high thermal conductivity and reflectivity, although this is lower than the more popular Grade 1050A. Grade 1200 also has very good weldability, and comparatively offers slightly higher strength than 1050A.	Universal	Universal Sheet Metal Work, Spinning, Holloware
1230	AW-1230	A91230	Grade1230 offers good corrosion resistance. It can be manufactured into semi-finished or finished products using methods such as forging, welding, rolling, and casting.	Universal	General Sheet Metal Work
1235	AW-1235	A91235	Grade1235 offers good corrosion resistance and high thermal and electrical conductivity. Like others in the 1000 series, it has good forming abilities, but low mechanical strength. It is a non-heat treatable alloy but can be strengthened by cold working.	Universal	General Sheet Metal Work
1350	AW-1350	A91350	Grade 1350 has excellent formability and corrosion resistance. It is the alloy of choice for electrical conductors and for applications where strength is not as important as economics. Grade1350 has a tighter chemistry specification and is therefore often used in place of Grade1050A.	Electrical, Universal	Electrical Conductors, Pins, Rods, Rivets, Wire Form and Clips
			2000 SERIES (ALLOYED WITH COPPE	R)	
2024	AW-2024	A92024	Grade 2024 is a heat treatable alloy, which provides excellent toughness at moderately high strength levels, good fatigue resistance, and improved fracture toughness. It also offers very good machining characteristics. Its strength is slightly higher than 2014(A) and 2017A.Suitable for welding only by resistance welding.	Universal, Aerospace, Defence, Engineering, Transport	Commercial and Military Aircraft, Aircraft Structures and Components General Sheet Metal Work, Machine Military Equipment, Vehicle Parts, Structural Applications, Rivets

	#725 Test			3000 SERIES (ALLOYED WITH MANGANE	(SE)	The state of the s
				· ·		
SPC4 (NESSIGNATION	3003	AW-3003	A93003	Grade 3003 is a medium strength alloy with very good corrosion resistance and workability. Its excellent mechanical properties have led wide use throughout industry sectors. It has improved mechanical properties when compared with 1000 series alloys and is 20% stronger than 1100.	Universal, Chemical, Food & Beverage, Decorative	Heat Exchangers, Storage Tanks, Chemical Equipment, Kitchenware and Utensils, Decorative Trim, Roofing and Siding Materials
	3004	AW-3004	A93004	Grade 3004 is similar to the 3003 alloy, except for the addition of approximately 1% magnesium. It offers moderate strength, good workability, and good corrosion resistance, making it good general-purpose alloy. It is a non-heat treatable alloy but can be strengthened by cold working, to produce tempers with a higher strength but a lower ductility. The additional 1% magnesium in grade 3004, contributes in solid solution strengthening, allowing it to be made thinner. This has made it a popular choice for beverage cans and general can stock, replacing its predecessor Grade 3003.	Universal, Food & Beverage, Transport	General Sheet Metal Work, Beverage Cans, Storage Tanks, Pressure Vessels, Vehicle Parts
30000	3103	AW-3103	A93103	Grade 3103 is medium strength alloy with good corrosion resistance and very good weldability. It is considered a good general-purpose alloy, with properties that are very close to Grade 3003.	Universal	General Sheet Metal Work
1125120	3104	AW-3104	A93104	Grade 3104 like others in the 3000 series is a good general purpose alloy, with medium strength and good corrosion resistance.	Universal, Transport	General Sheet Metal Work, Storage Tanks, Pressure Vessels, Vehicle Parts
				4000 SERIES (ALLOYED WITH SILICON	J)	
E.				Available by Request		,
I X I				5000 SERIES (ALLOYED WITH MAGNESI	UM)	
					Chemical,	
SELL ALER LOS MAN AND AND AND AND AND AND AND AND AND A	5005	AW-5005	A95005	Grade 5005 has good corrosion resistance and is hardenable to a significant degree by cold working, enabling a series of "H" tempers. However this remains inferior to the high strengths of corresponding tempers in other alloys such as 5052 or 5083. Tempers H116 and H321 can be used in fresh and salt water.	Decorative, Architectural, Construction, Marine, Food Domestic, Electrical, Appliances	Roofing and Siding Materials, Chemical and Food Processing, Utensils, Storage Tanks, Domestic Appliances, Cladding, Decorative Items, Electrical Conductors, Signage, HVAC Equipment, Packaging, General Sheet Metal Work
高端日子三月	5050	AW-5050	A95050	Grade 5050 has very good corrosion resistance and good workability properties. It is a non-heat treatable alloy but can be strengthened by cold working. In the annealed condition, it offers fair machinability but is improved by cold working. When machining, it is advisable to use proper lubricants.	Domestic Appliances, Construction, Automotive	Refrigerator Trim, Coiled Tubes, Construction Materials
1 0 7 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5052	AW-5052	A95052	Grade 5052 is a high strength alloy with very good resistance to corrosion, especially in marine environments. It has a medium to high fatigue strength, making it suitable for applications that are subject to excessive vibrations. With good weldability and formability characteristics, the alloy can be used in a wide range of applications. It is a non-heat treatable alloy but can be strengthened by cold working. In the annealed condition, it is stronger than Grades 1100 and 3003.	Marine, Architectural, Transport, Food & Beverage, Domestic Appliances, Automotive	Marine Components, Pressure Vessels, Treadplate, Transportation Parts, Heavy Duty Utensils, Food Processing, Hydraulic Systems, Fuel Tanks, Containers, Domestic Appliances, Chemical Equipment, Architecture Fittings, Signage
	5251	AW-5251	A95251	Grade 5251 is suitable for general sheet metal work where higher mechanical properties are required together with a degree of formability. It has a higher strength and extra hardness over pure aluminium grades, which allows for improved machinability. It is a non-heat treatable alloy, but can be strengthened by cold working.	Chemical, Universal, Marine, Pharmaceutical, Architectural, Packaging, Domestic Appliances	Marine Components, Heat Exchangers, Higher Strength Sheet Metal Work, Packaging, Panelling, Welded Structures, Cabinets, Domestic Appliances, Pressure Vessels
	5754	AW-5754	A95754	Grade 5754 has excellent weldability and very good workability, with has higher strength properties compared to Grade 5251. It is a popular choice for corrosive environments as it offers extremely good resistance to both seawater corrosion and chemical corrosion.	Marine, Oil & Gas, Chemical, Nuclear, Food, Automotive	Shipbuilding, Food Processing, Treadplate, Vehicle Bodies, Fishing Industry Equipment, Welded Chemical and Nuclear Structures
1				6000 SERIES (ALLOYED WITH MAGNESIUM &	SILICON)	
報は 記録を記述 という	6061	AW-6061	A96061	Grade 6061is a medium to high strength with very good corrosion resistance and medium fatigue strength. It is heat-treatable and considered to be the most versatile of the heat-treatable alloys. It is commonly used in heavy duty structures. In the annealed condition, it offers excellent weldability and formability, and is readily disposed to furnace brazing.	Marine, Aerospace, Transport, Construction, Energy	Shipbuilding, Motorboats, Aircraft Structures, Vehicle Bodies, Pylons and Towers, Railroad Cars, Vehicle Bodies, Bridges, Piping, Pylons, Transportation Parts, Boilers, Rivets
では特別ではてのとことには、中国	6082	AW-6082	A96082	Grade 6082 has the highest strength of all the 6000 series alloys, offering excellent corrosion resistance and good machinability and medium high fatigue strength. 6082 is considered a structural alloy, and is commonly used in high stressed applications, such as trusses, cranes and bridges. It has replaced 6061 in many applications. The extruded finish is not as smooth and therefore not as aesthetically pleasing as other alloys in the 6000 series. It can be heat treated or cold formed.	Marine, Transport, Energy, Defence, Construction, Food & Beverage,	Roofing and Siding Materials, Heavy Duty Structures In Railroad Cars, Vehicle Bodies, Shipbuilding, Offshore, Bridges, Military, Bicycles, Boilers, Flanges, Hydraulic Systems, Mining Equipment, Pylons and Towers, Motorboats, Nuclear Technology, Piping, Rivets
100				7000 SERIES (ALLOYED WITH ZINC)		
各省位在2000年的	7072	W-7072	A97072	Grade 7072 is used for high-strength structures, primarily in aircraft, as it offers exceptionally high mechanical strength and is machinable and work hardenable. Whilst it is still a versatile alloy, it has poor corrosion resistance compared to other Aluminium alloys. This grade is also use for cladding other Aluminium alloys. This grade is distinct from other 7000 series alloys, which are alloyed with magnesium for strengthening.	Aerospace, Decorative, Marine	Storage, Heat Exchangers, Pressure Vessels, Decorative Items, Golf Heads, Tooling, Jigs, Machinery, High-End Aluminum Bike Frame.
44				8000 SERIES (ALLOYED WITH OTHER		
ではばばれ 所 は は	8011	AW-8011	A98011 A9811	8000 series alloys have high formability, with deep drawing formability standing out the most. Additional alloying elements include Iron, nickel, which are used to increase strength without significant loss in electrical conductivity. Like other Aluminium alloys, it offers excellent corrosion resistance.	Aerospace, Marine, Food & Beverage, Automotive, Packaging, Decorative	Heat Exchangers, Packaging, Vehicles, Shipbuilding, Insulation Materials, Decorative Items
1	A TOTAL ST	The state of the s				

Aluminium Chemical Properties

			ALL	JMINIUN	M CHE	ЛІCAL F	PROPE	RTIES					
ALLOY	EURO.	ASTM NAME			1	YPICAL C	HEMICAL	. COMPOS	ITION %				
NUMBER	NAME	UNS	Al	Cr	Cu	Fe	Mg	Mn	Si	Ti	V	Z	Others
				1	1000 SER	IES (PUF	RE)						
1050	AW-1050	A91050	Balance	-	0.05	0.04	0.050	0.05	0.25	0.03	0.05	0.05	-
1050A	AW-1050A	A91050A	99.50	-	0.05	0.04	0.050	0.05	0.25	0.05	-	0.07	0.03
1060	AW-1060	A91060	99.60	-	0.05	0.35	0.030	0.03	0.25	0.03	0.05	0.05	0.03
1070	AW-1070	A91070	99.70	-	0.04	0.25	0.030	0.03	0.20	0.03	0.05	0.04	0.03
1070A	AW-1070A	A91070A	99.70	-	0.03	0.25	0.030	0.03	0.20	0.03	-	0.07	0.03
1100	AW-1100	A91100	99.00	-	0.05 - 0.20	Si+Fe	-	0.05	0.95	-	-	0.10	0.05
1145	AW-1145	A91145	99.45	-	0.05	Si+Fe	-	0.05	0.55	-	-	-	0.03
1200	AW-1200	A91200	99.00	-	0.05	Si+Fe	-	0.05	1.00	0.05	-	0.10	0.05
1230	AW-1230	A91230	99.30	-	0.10	Si+Fe	0.05	0.05	0.70	0.05	0.05	0.10	0.03
1235	AW-1235	A91235	99.35	-	0.05	Si+Fe	0.05	0.05	0.65	0,06	0.05	0.10	0.03
1350	AW-1350	A91350	99.50	0.01	0.05	0.4	-	0.01	0.10	-	-	0.05	0.10
			20	000 SERI	ES (ALLC	YED WIT	ГН СОРР	PER)					
2024	AW-2024	A92024	Balance	0.10	3.80 - 4.90	0.5	1.2 - 1.8	0.30 - 0.90	0.50	0.15	-	0.25	0.05
			3000	SERIES	(ALLOY	ED WITH	MANGA	NESE)					
3003	AW-3003	A93003	Balance	-	0.20	0.70	-	1.00 - 1.50	0.60	-	-	0.10	0.05
3004	AW-3004	A93004	Balance	-	0.25	0.70	0.80 - 1.30	1.00 - 1.50	0.30	-	-	0.25	0.05
3103	AW-3103	A93103	Balance	0.10	0.10	0.70	0.30	0.90 - 1.50	0.50	-	-	0.20	0.05
3104	AW-3104	A93104	Balance	-	0.05 - 0.25	0.80	0.80 - 1.30	0.8 - 1.40	0.60	0.1	0.05	0.25	Ga: 0.0
			4	000 SERI	ES (ALLO	YED WI	TH SILIC	ON)					
					Available	on Request							
			500	0 SERIES	(ALLOY	FD WITH	MAGNE	SIUM)					
5005	AW-5005	A95005	Balance	0.10	0.20	0.70	0.50 - 1.10	0.20	0.30	-	-	0.25	0.05
5050	AW-5050	A95050	Balance	0.10	0.20	0.70	1.10 - 1.80	0.10	0.40	_	-	0.25	0.05
5052	AW-5052	A95052	Balance	0.15 - 0.35	0.10	Si+Fe	2.20 - 2.80	0.10	0.45	-	-	0.10	0.05
5251	AW-5251	A95251	Balance	0.15	0.15	0.50	1.70 - 2.40	0.10 - 0.50	0.40	0.15	-	0.15	0.05
5754	AW-5754	A95754	Balance	0.30	0.10	0.40	2.60 - 3.60	0.50	0.40	0.15	-	0.20	0.05
					OYED W	TH MAG							
6061	AW-6061	1	Balance	0.04 - 0.35		0.70	0.80 - 1.20	0.15	0.40 - 0.80	0.15	_	0.25	0.05
6082	AW-6081	A96061 A96082		0.04 - 0.35	0.15 - 0.40	0.70	0.60 - 1.20	0.15	0.70 - 1.30	0.15	-	0.25	0.05
0002	AVV-0U82	A90082	Balance		RIES (AL				0.70 - 1.30	U. I		0.20	0.05
7072	W-7072	A97072	Balance	7000 SEI	0.10	Si+Fe	0.10	0.10	0.7	-	_	0.8 - 1.3	0.05
1012	VV-/U/2	M9/0/2			IES (ALL				0.7			0.0 - 1.3	0.05
				SER	IES (ALL	OYED WI		=n)					
8011	AW-8011	A98011	97.3 - 98.9	0.05	0.10	0.60 - 1.00	0.05	0.20	0.50 - 0.90	0.08	-	0.10	0.05
8111	AW-8111	A9811	Balance	0.05	0.10	0.40 - 1.00	0.05	0.05	0.30 - 1.10	0.08	-	0.10	0.05 ea Total 0.
		COURSE STATE OF STATE	C. O. C. Branches	VI	A CONTRACTOR OF THE	AND DESCRIPTION OF THE PARTY OF	SHIP SHIP SHIP SHIP SHIP SHIP SHIP SHIP	THE RESERVE THE PARTY OF THE PA	THE RESIDENCE OF THE PARTY OF T	CONTRACTOR OF THE PARTY OF THE		-	

Aluminium Mechanical Properties

				ALUMINIUI	M MECHAI	NICAL PRO	PERTIES		
世代の場合は	ALLOY NUMBER	EURO. NAME	ASTM NAME UNS	Proof Strength 0.2% Min (N/mm2)	Tensile Strength	Elong. % Min. (50mm Gauge Length)	Hardness Max (VPN)	Tempers Available	
					1000 SERIE	S (PURE)			
	1050	AW-1050	A91050			Mechanical Prop	perties available on		
	1050A	AW-1050A	A91050A	20 min	65-95	20 min	20HBW	0, H111, H112, H12, H14, H16, H18, H19, H22, H24, H26, H28	
7# 385	1060	AW-1060	A91060			Mechanical Prop	perties available on	request	
3	1070	AW-1070	A91070			Mechanical Prop	perties available on	request	
Sep	1070A	AW-1070A	A91070A	15 min	60-90	23 min	18HBW	0, H111, H112, H12, H14, H16, H18, H22, H24, H26	
district the same of the same	1100	AW-1100	A91100			Mechanical Prop	perties available on	request	
世間	1145	AW-1145	A91145			Mechanical Prop	perties available on	request	
100	1200	AW-1200	A91200	25 min	75-105	19 min	23HBW	0, H111, H112, H12, H14, H16, H18, H19, H22, H24, H26	
	1230	AW-1230	A91230			Mechanical Prop	perties available on	request	
	1235	AW-1235	A91235			Mechanical Prop	perties available on		
//	1350	AW-1350	A91350	20 min	65-95	20 min	20HBW	0, H111, H112, H12, H14, H16, H18, H19, H22, H24, H26, H28	
9				2000 SEI	RIES (ALLO)	ED WITH CC	PPER)		
語ない	2024	AW-2024	A92024	140 max	220 max	12 min	55HBW	0, T4, T3, T351, T42, T8, T851, T62	
				3000 SERIE	S (ALLOYEI	D WITH MAN	GANESE)		
	3003	AW-3003	A93003	35 min	95-135	15 min	28HBW	0, H111, H112, H12, H14, H16, H18, H19, H22, H24, H26, H28	
11111	3004	AW-3004	A93004	60 min	155-200	13 min	45HBW	0, H111, H12, H14, H16, H18, H19, H22, H24, H26, H28, H32, H34, H36, H38	
	3103	AW-3103	A93103	35 min	90-130	17 min	27HBW	0, H111, H112, H12, H14, H16, H18, H19, H22, H24, H26, H28	
200	3104	AW-3104	A93104			Mechanical Prop	perties available on	request	
				4000 SE	RIES (ALLO)	YED WITH SII	LICON)		
100					Available or	n Request			
				5000 SERII	ES (ALLOYE	D WITH MAG	NESIUM)		
() () () () () ()	5005	AW-5005	A95005	35 min	100-145	15 min	29HBW	0, H111, H112, H12, H14, H16, H18, H19, H22, H24, H26, H28, H32, H34, H36, H38	
	5050	AW-5050	A95050	45 min	130-170	16 min	36HBW	0, H111, H112, H12, H14, H16, H18, H22, H24, H26, H28, H32, H34, H36, H38	
100	5052	AW-5052	A95052	65 min	170-215	12 min	47HBW	0, H111, H112, H12, H14, H16, H18, H22, H24, H26, H28, H32, H34, H36, H38	
552	5251	AW-5251	A95251	60 min	160-200	13 min	44HBW	0, H111, H12, H14, H16, H18, H22, H24, H26, H28, H32, H34, H36, H38	
oris mis Mar	5754	AW-5754	A95754	80 min	190-240	12 min	52HBW	0, H111, H112, H12, H14, H16, H18, H22, H24, H26, H28, H32, H34, H36, H38	
1			600	0 SERIES (AI	LLOYED WIT	H MAGNESI	JM & SILICO	N)	
124	6061	AW-6061	A96061	85 max	150 max	14 min	40HBW	0, T4, T451, T42, T6,T651, T62	
高温を表現を表現を表現	6082	AW-6082	A96082	85 max	150 max	14 min	40HBW	0, T4, T451, T42, T6,T651, T62, T61, T6151	
				7000 S	ERIES (ALL	OYED WITH Z	ZINC)		
	7072	W-7072	A97072			Mechanical Prop	perties available on	request	
				8000 SERIES (ALLOYED WITH OTHER)					
100	8011	AW-8011	A98011			Mechanical Prop	perties available on	request	
際語	8111	AW-8111	A9811			Mechanical Prop	perties available on	request	

Clad Products

Clad Metals are created when two or more metals are joined together through a laminating process. Clad products are ideal when a product requires material characteristics and properties that cannot be found in a single metal. By combining metals, the superior properties for layer, such as strength, corrosion resistance, thermal and electric conductivity, weight, surface finish, availability, cost, even material availability, clad material can create the exact blend of properties needed. Aluminium is commonly used as a base or inlay layer material, however there is an extensive array of combinations possible using other metals, including Stainless Steel, Copper and Nickel Alloys.

As a result, Clad Metals offer designers, engineers and manufactures the freedom to create new solutions with targeted properties for even the most unique design challenges. This makes Clad Metals an ideal material of choice for a number of sectors including Petrochemical, Oil and Gas, Construction, Aerospace, Telecommunications, Domestic Appliances, Electronics, Medical and Defence.

		CLAD ALUMI	NIUM RAN	GE				
Base Material	Cladding Material	Cladding Thickness	Thickness (mm)	Width (mm)	Temper			
0000	4004, 4045, 4343, 7072	2.5% ± 1% 3% ± 19% 4% ± 19 5% ± 1% 6.5% ± 1.5% 7.5% ± 1.5%	0.30 - 3.00	900 - 1350	F, O, H111, H14, H16, H18, H22, H24, H26, H28			
3003	(on one or both sides)	10% ± 2% 12% ± 2% 13% ± 2% 14% ± 2.5% 14% ± 3% 15% ± 2.5% 15% ± 3%	3.10 - 6.00	900 - 1350	F, O, H111, H12, H22, H24			
Other specifications available upon request.								

CLAD METALS: PUSHING THE FRONTIERS OF MANUFACTURING & DESIGN THROUGH INNOVATIVE MATERIAL SOLUTIONS

		CLAD METAL RANGE		
Base Material (Substrate)	Inlay Material	Substrate Thickness	Substrate Width	Inlay Depth
Aluminium Alloys Copper Alloys Bronze Nickel Alloys Stainless Steel Alloys	Aluminium Alloys Copper Alloys Stainless Steel Alloys Nickel Alloys	0.05 mm - 2.54 mm (0.002" - 0.100")	Bis zu 7.00"	2-40% of the total thickness from 2.54 mm (0.100")

Other material combinations are available upon request, including Titanium and Magnesium. Please contact our Sales Team with your requirements.

Popular Configurations

STAINLESS STEEL CLAD ALUMINIUM

STAINLESS STEEL

ALUMINIUM STAINLESS STEEL STAINLESS STEEL

Typical Materials include: Aluminium Alloy: 1100, Alloy 502 Stainless Steel: 301, 304, 430

ALMOST ANY COMBINATION IS POSSIBLE

COPPER CLAD STAINLESS STEEL

COPPER

STAINLESS STEEL

COPPER

COPPER STAINLESS STEEL STAINLESS STEEL COPPER STAINLESS STEEL

Typical Materials include: Copper: C1100 (C101), C10200, C12200 (C106) Stainless Steel: 301, 304, 430

Contact our knowledgeable sales team with your clad metal requirements and let us find the best solution for you

COPPER CLAD ALUMINIUM

ALUMINIUM

COPPER

ALUMINIUM COPPER

ALUMINIUM ALUMINIUM

Typical Materials include: Copper: C1100 (C101), C10200 Aluminium Alloy: 1100, Alloy 502

ALUMINIUM

NICKEL CLAD

COPPER

STAINLESS STEEL

NICKEL ALLOY

NICKEL ALLOY STAINLESS STEEL

NICKEL ALLOY

STAINLESS STEEL

NICKEL ALLOY

ALUMINIUM **NICKEL ALLOY**

NICKEL ALLOY ALUMINIUM

NICKEL ALLOY

STAINLESS STEEL

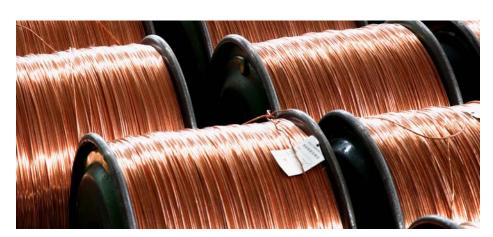
COPPER

STAINLESS STEEL

NICKEL ALLOY

Typical Materials include: Nickel Alloy: 201 Copper: C1100 (C101), C10200 Aluminium Alloy: 1100, Alloy 502 Stainless Steel: 301, 304, 430

Copper, Brasses & Bronzes



Copper and Copper alloys form an important group of metals with many excellent properties. They have very good electrical and thermal conductivities, are easy to fabricate and include some alloys of exceptional strength (notably Copper Beryllium Alloys) and corrosion resistance. The characteristics of Copper and Copper alloys have resulted in extensive use of those alloys in a very wide range of applications. They can be formed, pressed, deep drawn or photochemically etched into the most complex of shapes.

CC	OPPER, BRASS & BF	RONZE STOCK RANG	GE							
COIL STO	CK RANGE	WIRE STO	CK RANGE							
Thickness (mm)	Width (mm)	Round	Shaped							
СОМ	MERCIALLY PURE HIG	H CONDUCTIVITY COP	PERS							
0.01 - 3.0	3 - 1220	0.1 – 10.00 mm dia	upto 45 mm2 area							
	BRAS	SSES								
0.01 - 3.0	3 - 1220	0.1 – 10.00 mm dia	upto 45 mm2 area							
	PHOSPHOI	R BRONZES								
0.01 - 3.0	3 - 1220	0.1 – 10.00 mm dia	upto 45 mm2 area							
	NICKEL	SILVERS								
0.01 - 3.0	3 - 1220	0.1 – 10.00 mm dia	upto 45 mm2 area							
cu	PRONICKEL & HIGH C	OPPER CONTENT ALL	oys							
0.01 - 3.0	3 - 1220	0.1 – 10.00 mm dia	upto 45 mm2 area							
	COPPER BERYLLIUM ALLOYS									
0.01 - 3.0	3 - 1220	0.1 – 10.00 mm dia	upto 45 mm2 area							
Othe	Other specifications can be made available upon request. Please contact us with your requirements.									

Types

Commercially
Pure High
Conductivity
Coppers

Brasses

Phosphor Bronzes

Nickel Silvers

Cupronickels & High Copper Content Alloys The various Coppers within this group have differing degrees of purity and consequently exhibit different characteristics. For high conductivity requirements oxygen-free Coppers are required and this extra purity enhances ductility and gives freedom from hydrogen embrittlement or blistering during brazing operations.

Brasses are Copper based Alloys with Zinc as the essential secondary ingredient. The addition of Zinc to Copper creates a lower cost alloy with superior cold working strength to Copper but at the expense of reduced conductivity. The degree of alloying gives a range of colours for decorative applications.

Phosphor Bronzes are Copper Tin Alloys containing up to 7% tin and a small quantity of phosphorus, which is a residual from the de-oxidation of the Copper melt before the tin is added.

Phosphor Bronzes can be significantly hardened by cold working to give excellent spring properties.

These alloys of Copper Nickel and Zinc contain no Silver, but take their name from their silvery appearance and ability to be polished to a high lustre. Their mechanical properties are somewhat higher than Brasses, but not matching Phosphor Bronze.

The most important commercial alloys are based on 90/10 Copper Nickel. Cupronickels have good formability and excellent resistance to sea water corrosion. An important high Copper content alloy is Alloy 194 which has 2.3% iron with small additions of phosphorus and Zinc. Particularly developed for the leadframe application, it has excellent resistance to softening, being able to withstand 300°C plus, for a few minutes.

AVAILABLE GRADES

Commercially Pure High Conductivity
Coppers
C101, C102, C103, C106

Brasses CZ106, CZ107, CZ108

Phosphor Bronzes C51000, C51900

Nickel Silvers, Cupronickels & High Copper Content Alloys C74500, C75700, C76400, C77000, C72500

> Copper Beryllium Alloys C17410, C17200

> > Other Alloys C19400

Copper Beryllium Alloys Copper Beryllium Alloys are precipitation hardening alloys of remarkable strength, elasticity and fatigue resistance, making them ideal for spring applications. The principal compositions are based around 1.6% to 2.0% beryllium, with a small addition of cobalt added to refine grain size. These alloys can be supplied in the following forms:

- i) Solution Treated (Annealed), or
- ii) Solution Treated & Temper rolled, i.e. 1/4 Hard, 1/2 Hard, Hard, etc.

Copper, Brasses & Bronzes Features

		COPPER ALLOY FEATURES									
	MATEF DESIGNA EN1652 c	NOITA	NEARE	EST FIT	Key Features	Key Markets	Applications				
1	Symbol/ Name	Number	UNS	BS 2870							
					HIGH CONDUCTIVITY COPPER	s					
The second second	Cu-ETP	CW004A	C11000	C101	Cu-ETP has no susceptibility to hydrogen embrittlement as well as a high electrical conductivity of 101% IACS. This is due to a high purity and an absence of deoxidisers.	Architectural, Chemical Engineering, Culinary, Electrical	Electrical Conductors, Chemical Process Equipment, Radiators, Kitchen Appliances				
The same	Cu-HCP	CW021A	C10300	C102	A de-oxidised,oxygen-free Copper with a low residual phosphorus content. Offers excellent formability and weldability, as well as good soldering and brazability.	Electrical, Manufacturing	Electrical Contacts & cable Industry, Pressure Vessels				
	Cu-OF	CW008A	C10200	C103	Oxygen Free (maximum of 10ppm). High purity Copper alloy, offering 100% IACS. It is also immune from hydrogen embrittlement.	Electronics, Telecommunications	Printed Circuits, Electronic Components, Telecommunication Cables				
	Cu-DHP	Cu-DHP CW024A C12200 C106		C106	A de-oxidised, non-arsenical, oxygen-free 99.9% pure Copper, with limited residual phosphorus content. Offers excellent formability and weldability, as well as good corrosion resistance. This makes it ideal for applications where electrical conductivity is only of secondary importance.	Architectural, Electrical, Plumbing	Piping & Fittings, Heat Exchangers, Transistors, Air/Hydraulic/Oil Lines				
1					BRASSES						
	CuZn30	CW505L	C26000	CZ106	Solid Solution Strengthened Brass. The added 30% Zinc increases mechanical strength, but decreases conductivity.	Electronics, Decorative	Connectors, Electronic Components, Jewellery				
	CuZn33	CW506L	C26800	CZ107	Solid Solution Strengthened Brass with 33% Zinc.	Automotive, Electrical Engineering	Electrical Components, Connectors, Clips, Springs				
	CuZn37	CW508L	C27200	CZ108	Zinc additions of 37%. Higher Zinc additions increase the inclination for Stress Cracking Corrosion.	Electronics, Plumbing, Decorative	Electric Brackets, Springs, Hose Couplings, Clips, Contacts, Radiator Cores				
					PHOSPHOR BRONZES						
	CuSn5	CW451K	C51000	PB102	Solid Solution Strengthened Brass with 5% tin. Good combination of conductivity and strength.	Automotive, Electrical Engineering	Connectors, Springs, Stamped Parts				
	CuSn6	CW452K	C51900	PB103	Higher tin content than CuSn5 gives higher strength and spring characteristics. Wear resistant and has good corrosion resistance.	Automotive, Electrical Engineering, Paper and Pulp Industry, Chemical Industry	Flexible Hoses, Springs, Conductive Springs				
			NICKE	EL SILVE	RS, CUPRONICKELS & HIGH COPPE	R CONTENT ALLO	YS				
1	CuNi10Zn27	CW401J	C74500	NS103	Good corrosion resistance in rural and marine atmospheres. Excellent cold working properties and is suitable for various forming processes. Poor hot working characteristics however.	Decorative, Industrial	Nameplates, Light & Optical Fittings, Door Kicking Plates, Trophies.				
	CuNi12Zn24	CW403J	C75700	NS104	Good resistance to atmospheric corrosion. Also offers resistance to neutral and alkaline solutions, however resistance to oxidising acids is poor. Good cold forming properties but poor machinability.	Industrial, Telecommunications, Decorative	Relay Springs, Contact Springs, Connectors, Pressure Membranes, Engraved Name Plates				
	CuNi18Zn20	CW409J	C76400	NS106	Good resistance to atmospheric corrosion. Good cold formability and spring properties. Suitable for many decorative applications. Much lower sensitivity to SCC than Brasses.	Electronics, Telecommunications,	Shielding, Connectors, Relay Springs, Engraved Name Plates,				
	CuNi18Zn27	CW410J	C77000	NS107	Good corrosion resistance , good formability, good tarnish-resistance and colour make it ideal for decorative purposes.	Decorative	Decorative Purposes				
	CuNi9Sn2 (Alloy 725) CW351H C72500 - A good combination of fatigue strength, formability and resistance to corrosion.		Telecommunications, Electronics	Circuit Breaker Components, Relay & Switch Springs, Bellows, Clamps							

				COOPER BERYLLIUM ALLOYS	3		
(Alloy	174)	C17410	-	Mill hardened alloy.	Automotive, Telecommunications	Automotive Terminals, Spring Contacts	
(1.8% E		0	00.464	Highest Strength of any Copper alloy. Excellent		Electrical Contacts, Pressure	
(Alloy CuBe2	25) CW101C	C17200	CB101	ductility and formability. Greater Electrical conductivity than other high strength alloys.	Electronics	Sensor Bellows, EM Shielding Gaskets	
				OTHER ALLOYS			
Alloy 194		C19400	-	Excellent formability, high strength and good conductivity. Also offers good resistance to softening.	Telecommunications, Electronics	Circuit Breaker Components, Relay & Switch Springs, Bellows, Clamps	

Copper, Brasses & Bronzes Chemical Properties

ğ		Copp	er & <i>F</i>	Alloys	Grade	e Des	signa	tions	& Che	emica	l Comp	ositi	ons (%	by w	eight)	
	MATEI DESIGN EN1652	ATION	NEAF Fi					1	YPICA	L CHEM	IICAL CO	MPOSI	ITION %			
	Symbol/ Name	Number	UNS	BS 2870	Cu	Be	Со	Fe max	Mn max	Ni	Р	Pb max	Sn	Zn	Others	Impurities max
						Н	IGH C	ONDUC	TIVIT	COPP	ERS					
å	Cu-ETP	CW004A	C11000	C101	99.90 min	-	-	-	-	-	-	0.005			Bi 0.0005 max O 0.040 max	0.3
	Cu-HCP	CW021A	C10300	C102	99.95 min				-		0.002 - 0.007					
A	Cu-OF	CW008A	C10200	C103	99.95 min	-	-	-	-	-	-	0.005			Bi 0.0005 max	0.3
	Cu-DHP	CW024A	C12200	C106	99.90 min	-			-		0.015 - 0.040	-			-	
ø								BR/	SSES	;						
	CuZn30	CW505L	C26000	CZ106	69 - 71	-	-	0.05	-	0.30 max	-	0.05	0.10 max	Balance	Al 0.02 max	0.10
	CuZn33	CW506L	C26800	CZ107	66 - 68	-	-	0.05	-	0.30 max	-	0.05	0.10 max	Balance	Al 0.02 max	0.10
	CuZn37	CW508L	C27200	CZ108	62 - 64	-	-	0.10	-	0.30 max	-	0.10	0.10 max	Balance	AI 0.05 max	0.10
ij							PH	OSPHO	RBR	ONZES						
	CuSn5	CW451K	C51000	PB102	Balance	-	-	0.10	-	0.20 max	0.01 - 0.40	0.02	4.6 - 5.5	0.2 max	-	0.20
	CuSn6	CW452K	C51900	PB103	Balance	-	-	0.10	-		0.01 - 0.40	0.02	5.5 - 7.0	0.2 max	-	0.20
N			NIC	CKEL	SILVER	s, cu	PRON	CKELS	& HIG	H COF	PPER CC	NTEN	IT ALL	DYS		
20	CuNi10Zn27	CW401J	C74500	NS103	61 - 64	-	-	0.3	0.5	9.00 - 11.00		0.05		Balance		0.20
Ň	CuNi12Zn24	CW403J	C75700	NS104	63 - 66	-	-	0.3	0.5	11.00 - 13.00		0.03	0.03 max	Balance		0.20
SE SE	CuNi18Zn20	CW409J	C75200	NS106	60 - 63	-	-	0.3	0.5	17.00 - 19.00		0.03	0.03 max	Balance		0.20
	CuNi18Zn27	CW410J	C77000	NS107	53 - 56	-	-	0.3	0.5	17.00 - 19.00		0.03	0.03 max	Balance		0.20
	CuNi9Sn2 (Alloy 725)	CW351H	C72500		Balance	-	-	0.3	0.3	8.50 - 10.50		0.03	1.8 - 2.8	0.10 max		0.10
						C	COOPE	R BER	YLLIU	M ALL	DYS					
	(Alloy	174)	C17410	-	Balance	0.15 - 0.5	0.35 - 0.6		-		-	-	-	-	-	0.50
	(1.8% B	e/Cu)			Balance	1.7 - 1.9	*		-	*	-		-	-	* (Ni + Co) 0.05 - 0.40	0.50
	(Alloy	25)	C17200	CB101	Balance	1.8 - 2.0	*	*	-	*	-	-	-	-	* (Ni + Co) 0.2 min *(Co + Ni + Fe) 0.6 max	0.50
d	CuBe2	CW101C			Balance	1.8 - 2.1	0.30 max	0.20 max	-	0.30 max	-	-	-	-	-	0.50
								OTHEF	ALLC	YS						
	(Alloy 194)		C19400	-	Balance	-	-	2.10 - 2.60	-		0.015 - 0.15	0.03	0.03 max	0.05 - 0.20	-	0.15

Copper, Brasses & Bronzes Mechanical Properties

				D DB-	OCCO O PROMIES		LDDODE	TIFO				
			COPPE	H, BHAS	SSES & BRONZES N	IECHANICA	L PROPER	RIIES				
	MATE DESIGN EN1652	IATION	NEAR	EST FIT	Material Condition (R Value)	Proof Strength 0.2% Min (N/mm2)	Tensile Strength (N/	Elong. % Min. (50mm Gauge	Hardness Max (VPN)			
	Symbol/ Name	Number	UNS	BS 2870		(N/mm2)	mm2)	Length)	, ,			
1	iname				HIGH CONDUCTIVITY COPPERS							
			ĺ	l	R220	140 Max	220-260	33	40-65			
					R240	180 Min	240-360	8	65-95			
A.	Cu-ETP	CW004A	C11000	C101	R290	250 Max	290-360	4	90-110			
					R360	320 Min	360 Min	2	110 Min			
					R220	140 Max	220-260	33	40-65			
					R240	180 Min	240-360	8	65-95			
	Cu-HCP	CW021A	C10300	C102	R290	250 Max	290-360	4	90-110			
3					R360	320 Min	360 Min	2	110 Min			
ľ					R220	140 Max	220-260	33	40-65			
					R240	180 Min	240-360	8	65-95			
	Cu-OF	CW008A	C26000	C103	R290	250 Max	290-360	4	90-110			
					R360	320 Min	360 Min	2	110 Min			
ŀ					R220	140 Max	220-260	33	40-65			
					R240	180 Min	240-360	8	65-95			
1	Cu-DHP	CW024A	C12200	C106	R290	250 Max	290-360	4	90-110			
1					R360	320 Min	360 Min	2	110 Min			
1			ļ.		BRASSES							
1					R270	160 Max	270-320	40	55-95			
					R350	170 Min	350-430	21	95-125			
	CuZn30	CW505L	C26000	CZ106	R410	260 Min	410-490	9	120-155			
J					R480	430 Min	480 Min	-	150 Min			
					R280	170 Max	280-380	40	55-90			
	0.7.00	OMEGO	000000	07107	R350	170 Min	350-430	23	90-125			
	CuZn33	CW506L	C26800	CZ107	R420	300 min	420-500	6	125-155			
ı					R500	450 Min	500 Min	-	155 Min			
1					R300	180 Max	300-370	38	55-95			
					R350	170 Min	350-440	19	95-125			
i.	CuZn37	CW508L	C27200	CZ108	R410	300 Min	410-490	8	120-155			
					R480	430 Min	480-560	3	150-180			
V					R550	500 Min	550 Min	-	170 Min			
					PHOSPHOR BRO	ONZES						
1					R310	250 Max	310-390	45	75-105			
					R400	240 Min	400-500	14	120-160			
	CuSn5	CW451K	C51000	PB102	R490	450 Min	490-580	8	160-190			
	Guono	OW45IN	051000	FDIUZ	R550	520 Min	550-640	4	180-210			
					R630	600 Min	630-720	3	200-230			
					R690	670 Min	690 Min	-	220 Min			
					R350	300 Max	350-420	45	80-110			
					R420	260 Min	420-520	17	125-165			
	CuSn6	CW452K	C51900	PB103	R500	450 Min	500-590	8	160-190			
	240110	CW452K		. 5.00	R560	500 Min	560-650	5	180-210			
					R640	600 Min	640-730	3	200-230			
					R720	690 Min	720 Min	-	220 Min			

Copper, Brasses & Bronzes Mechanical Properties continued

NICKEL S				CII VEDO	CUPRONICKELS & HIG	H CORRER C	ONTENT ALL	OVS	
J			MICKEL	JILVENS,		230 Max	1		00.440
					R360		360-430	35	80-110
	O NI107 07	0)4/404 1	074500	NOTO	R430	230 Min	430-510	8	110-150
	CuNi10Zn27	CW401J	C74500	NS103	R490	400 Min	490-580	8	150-180
					R550	480 Min	550-640	-	170-200
4					R620	580 Min	620 Min	2	190 Min
					R360	230 Max	360-430	35	80-110
	OuNid 07=04	CW403J	075700	NOTOA	R430	230 Min	430-510	8	110-150 150-180
7	CuNi12Zn24	GVV4033	C75700	NS104	R490 R550	400 Min 480 Min	490-580	-	170-200
					R550 R620	580 Min	550-640 620 Min	2	170-200 190 Min
			-		R380	250 Max	380-450	27	85-115
					R450	250 Min	450-520	9	115-160
	CuNi18Zn20	CW409J	C76400	NS106	R500	410 Min	500-590	3	160-190
	Culvi 10Z11Z0	GVV4093	076400	113100	R580	510 Min	580-670	-	180-210
					R640	600 Min	640-730	-	200-230
-					R390	280 Max	390-470	30	90-120
					R390 R470	280 Min	470-540	11	120-170
1	CuNi18Zn27	CW410J	C77000	NS107	R540	450 Min	540-630	3	170-200
1	Culvi 10Z11Z1	CVV4100	077000	103107	R600	550 Min	600-700	-	190-220
					R700	660 Min	700-800	2	220-250
				<u> </u>	R340	250 Max	340-410	30	70-100
					R380	200 Min	380-470	8	110-150
No.	CuNi9Sn2 CW351H		C72500	_	R450	370 Min	450-530	4	140-170
	(Alloy 725)	00000111	072300		R500	450 Min	500-580	2	160-190
					R560	520 Min	560-650	-	180-210
					COPPER BERYLLIUM		300 030		100 210
					COPPER BERTELION	WI ALLO 13			
1	(Alloy 1	74)	C17410	_	172 Hard (Solution Heat Treated, Cold Rolled and Precipitation Hardened at the Mill)	410 Min	650 Min	10	180-230
	(7 moy	,,,,	017410		Hard (Solution Heat Treated, Cold Rolled and Precipitation Hardened at the Mill)	480 Min	760 Min	7	210-280
	(1.8% B	e/Cu)			R410* (Solution Heat Treated & Cold Rolled)	250 Max	410 Min	20	90-150
2	(Alloy	25)			R580* (Solution Heat Treated & Cold Rolled)	510 Min	580 Min	8	180-250
			C17200	CB101	R1130** (Solution Heat Treated, Cold Rolled and Precipitation Hardened at the Mill)	890 Min	1130 Min	3	340-410
	CuBe2	CW101C			R1200** (Solution Heat Treated, Cold Rolled and Precipitation Hardened at the Mill)	980 Min	1200 Min	2	360-420
					OTHER ALLO	YS			
					R300	240 Max	300-340	16	80-100
					R340	240 Min	340-390	8	100-120
	/***	104)	010100	_	R370	330 Min	370-430	6	120-140
	(Alloy 1	194)	C19400		R420	380 Min	420-480	6	130-150
					R470	440 Min	470-530	4	140-160
					R520	470 Min	520-580	3	150-165
			10000011111						

Mild & Carbon Steel

Plain Carbon Steel Strip is used in a very wide range of applications because it is particularly adaptable to low cost techniques of metal forming such as presswork. These materials combine ease of fabrication with adequate strength and excellent finishing characteristics to provide good surface finish on the final article.

The Knight Group range of Carbon Steels can be broadly split into two categories: Low Carbon Mild Steels and High Carbon Spring Steels

Spring steels are available in the annealed condition for hardening after forming, or in the hardened and tempered condition.

The hardness or temper of cold rolled mild steel strip is determined by its analysis, the amount of cold rolling or by a final annealing process. These are selected to achieve the optimum mechanical properties for the forming operation whether it be deep drawing, forming or flat blanking. "Skin passed" is a very light rolling reduction after the annealing process to prevent the formation of deformation bands called stretcher strains, which can ruin surface appearance of the formed article.

Mild steels cannot be hardened except by cold working because their carbon content is too low for significant heat treatment reaction to take place, however they can be case hardened to give a harder surface.

Bright rolled Carbon Steels are often used in the annealed condition for forming of components, which are then batch heat treated to increase their hardness and spring characteristics. To maintain a good surface condition heat treatment should be carried out in a controlled atmosphere furnace at the appropriate temperature for the grade (see table) and oil quenched to achieve maximum hardness.

Tempering must then be carried out to reduce the strength/hardness of the material but considerably improve its toughness and ductility. Temperatures in the range of 300 - 450°C should be used to achieve the required final hardness. Alternatively, austempering is frequently carried out by quenching into a molten salt bath @ 350 - 450°C.

Hardened & tempered spring steel has been heat treated in strip form at the Mill, prior to being supplied to the customer. Many applications do not require severe bending and forming and it is often beneficial to use hardened & tempered strip in these cases. The main benefits are:, no risk of distortion, uniformity of surface finish, and constant mechanical properties.

These factors often mean reduced processing costs and a higher quality product.

Stress Relieving

After severe deformation hardened & tempered spring steel requires a low temperature (250 - 300°C) stress relieving operation to "set" the components into shape. This will impart a coloured oxide finish ranging from Bronze to Blue which slightly improves corrosion resistance.

AVAILABLE GRADES

Cold Rolled Low Carbon (Mild)

DC01

DC03

DC04

DC05 DC06

.

Cold Rolled
High Carbon Spring

Steel

C55S

C60S

C67S

7070

C75S

C85S

C90S

2000

C100S

C125S

48Si7

56Si7

51CrV4

80CrV2 75Ni8

125Cr2

102Cr6

Features

	MILD & CAR	BON STEEL	STOCK RANG	GE							
TYPE	COIL STOCK	RANGE	WIRE STOCK RANGE								
11172	Thickness (mm)	Width (mm)	Round	Shaped							
	LO	LOW CARBON STEEL									
Annealed	0.01 - 3.0	3 - 1220	0.1 – 10.00								
All Other Tempers	0.01 - 2.0	3 - 1000	mm dia	Upto 45 mm2 area							
	HIG	H CARBON	STEEL								
Annealed	0.05 - 3.0	3 - 650									
Cold Worked	0.05 - 1.6	3 - 450	0.1 – 10.00	Upto 45 mm2 area							
Hardened & Tempered	0.1 - 3.0	3- 450	mm dia								
	Other specifications can be made available upon request. Please contact us with your requirements.										

	SURFACE APPEARANCE	S AND FINISHES	
Symbol	Characteristics	Applications	Surface finish
MA	Bright, metallic clean surface, pitting, small defects and scratches are permitted.	All thicknesses and treatment conditions.	FRR, RM, RL 2)
МВ	Bright, metallic clean surface; pitting, grooves and scratches are permitted as long as the uniform smooth appearance is not substantially impaired when viewed with the naked eye.	Thicknesses =< 2.0mm in all conditions except A (annealed)	RM, RL 2)
MC	Bright, metallic clean surface; pitting, grooves and scratches are permitted as long as the uniform appearance of the mirror surface is not impaired.	Thicknesses =<1.0mm in all conditions except A (annealed).	SRN 2)
BR =	rough RM = matt RI = smooth F	RN = mirror 2) These	code

Cold Rolled Low Carbon (Mild) Steel

gamananan ka k	COLD ROLLED LOW CARBON (MILD) FEATURES										
DESI	GNATION	FORMER									
NAME	NUMBER	BRITISH STANDARD GRADE	Temper	Key Features	Applications						
1.0873	DCO6	-	Skin passed	Extra deep drawing quality, non-ageing	Very Deep Drawn Components, Automotive & Electrical Parts						
1.0312	DCO5	CS1		Extra deep drawing quality, non-ageing	Springs, clips, pressings and fasteners						
1.0338	DCO4	CS2	Annealed & Skin	Deep drawing quality, non-ageing	Deep Drawn and Stretch Formed						
1.0347	DCO3	CS3	Passed	Passed	Passed	Passed	Passed	Drawing quality, non-ageing	Shallow Drawn and Stretch Formed		
1.033	DCO1	CS4		Forming and Bending	Press Formed and Bent Components						
1.033	DCO1	CS4	Temper Rolled C290/ C340/ C390/ Forming and Bending CS4 C440		Press Formed and Bent Components						
			Hard Rolled C490/ C590/ C690	Blanking	Flat Components, Shims, Washers						

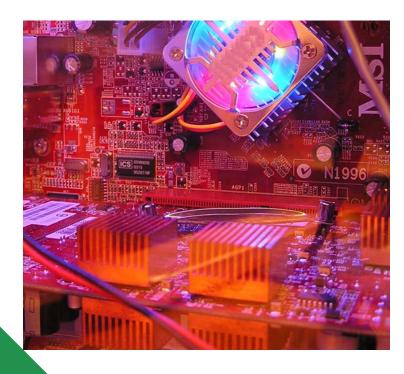
	COLD ROLLED LOW CARBON (MILD) STEEL CHARACTERISTICS														
DESIG	DESIGNATION FORMER BRITISH COMPOSITION % MECHANICAL PROPERTIES					MECHANICAL PROPERTIES									
NAME	NUMBER	STANDARD GRADE	С	C P S Mn Ti		Ti	Period Guaranteed	Delivery Condition	Symbol	Re N/mm2	Rm N/mm2	Elongation % min A80	Hardness HV		
									Annealed	А	-	270-390	28	105 max	
									Skin passed	LC	280 max	270-410	28	115 max	
ĺ									Work hardened	C290	200-380	290-430	18	95-125	
DC01									C340	250 min	340-490	-	105-155	-	
	1.033	CS4	0.12	0.045	0.045	0.6	-	3 months	C390	310 min	390-540	-	117-172	-	
					C440	360 min	440-590	-	135-185	-					
									C490	420 min	490-640	-	155-200	-	
N.								C590	520 min	590-740	-	185-225	-		
							C690	630 min	690 min	-	215 min	-			
N.	DC03 1.0347 CS3, CS2 0.10 0.035 0.035					Annealed	А	-	270-370	34	100 max				
N					Skin passed	LC	240 max	270-370	34	110 max					
		CS3, CS2							Work hardened	C290	210-355	290-390	22	95-117	
DC03			0 10	0.035	0 035	5 0 45	5 -	6 months	C340	240 min	340-440	-	105-130	-	
1 2000	1.0017	000, 002	0.10	0.000	0.000	0.10			o montrio	C390	330 min	390-490	-	117-155	-
N .										C440	380 min	440-540	-	135-172	-
V									C490	440 min	490-590	-	155-185	-	
									C590	540 min	590 min	-	185 min	-	
									Annealed	Α	-	270-350	38	95 max	
									Skin passed	LC	210 max	270-350	38	105 max	
										C290	220-325	290-350	24	95-117	
DC04	1.0338	-	0.08	0.030	0.030	0.4	_	6 months		C340	240 min	340-440	-	105-130	
									Work hardened	C390	350 min	390-490	-	117-155	
8										C440	400 min	440-540	-	135-172	
										C490	460 min	490-590	-	155-185	
										C590	560 min	590 min	-	185-215	
DC05	1.0312	-	0.06	0.025	0.025	0.35	-	6 months	Skin passed	LC	180 max	270-330	40	100 max	
DC06	1.0873	-	0.02	0.020	0.020	0.25	0.30	6 months	Skin passed	LC	80 max	270-350	38	-	

Cold Rolled High Carbon Spring Steel

	COLD ROLLED HIGH CARBON SPRING STEEL FEATURES										
DESIG	NATION	Temper	Key Features	Applications							
NAME	NUMBER	remper	Ney realures	Applications							
C55S C60S C67S C75S C85S C90S C100S	1.1204 1.1211 1.1231 1.1248 1.1269 1.1217 1.1274	Annealed & Skin Passed	Press forming and blanking, hardenable	Springs and Hight Strength Parts. E.g. Circlips & Automotive Clutch Plates Wear Resistant Parts, Knives, Saw Blades							
C125S 48Si7 56Si7 51CrV4 80CrV2 75Ni8 125Cr2 102Cr6	1.1224 1.5021 1.5026 1.8159 1.2235 1.5634 1.2002 1.2067	Hardened & Tempered	Flat or very simply formed shapes High fatigue and wear resistance	Flat Springs, Circlips, Automotive Clutch Plates High Performance Springs, Machine Knife Blades, Doctor Blades							

8	COLD ROLLED HIGH CARBON SPRING STEEL CHARACTERISTICS												
	DESIGNATION TYPICAL CHEMICAL COMPOSITION %										Hardness for Delivery Condition (reference values)		
P. P. II. S. V.	NAME	NUMBER	С	Si	Mn	P max	S max	Cr	Mo max	V max	Ni	Annealed (+A) or annealed and skin passed (+LC) Rockwell 'B' scale	Quenched and Tempered (+QT) Rockwell 'C' scale
100	C55S	1.1204	0.52-0.60	0.15-0.35	0.60-0.90	0.025	0.025	0.40 max	0.1	-	0.40 max	90 max	34 - 50.5
Ser.	C60S	1.1211	0.57-0.65	0.15-0.35	0.60-0.90	0.025	0.025	0.40 max	0.1	-	0.40 max	91 max	35 - 51.5
1	C67S	1.1231	0.65-0.73	0.15-0.35	0.60-0.90	0.025	0.025	0.40 max	0.1	-	0.40 max	92 max	38.5 - 54
	C75S	1.1248	0.70-0.80	0.15-0.35	0.60-0.90	0.025	0.025	0.40 max	0.1	-	0.40 max	93 max	38.5 - 54
が	C85S	1.1269	0.80-0.90	0.15-0.35	0.40-0.70	0.025	0.025	0.40 max	0.1	-	0.40 max	94 max	38.5 - 55
W.	C90S	1.1217	0.85-0.95	0.15-0.35	0.40-0.70	0.025	0.025	0.40 max	0.1	-	0.40 max	94 max	38.5 - 55
elii uz	C100S	1.1274	0.95-1.05	0.15-0.35	0.30-0.60	0.025	0.025	0.40 max	0.1	-	0.40 max	95 max	38.5 - 57
	C125S	1.1224	1.20-1.30	0.15-0.35	0.30-0.60	0.025	0.025	0.40 max	0.1	-	0.40 max	97 max	38.5 - 57
69 76	48Si7	1.5021	0.45-0.52	1.60-2.00	0.50-0.80	0.025	0.025	0.40 max	0.1	-	0.40 max	95 max	38.5 - 50.5
结构	56Si7	1.5026	0.52-0.60	1.60-2.00	0.60-0.90	0.025	0.025	0.40 max	0.1	-	0.40 max	96 max	38.5 - 50.5
10	51CrV4	1.8159	0.47-0.55	0.40 max	0.70-1.10	0.025	0.025	0.90-1.20	0.1	0.10-0.25	0.40 max	94 max	38.5 - 52.5
	80CrV2	1.2235	0.75-0.85	0.15-0.35	0.30-0.50	0.025	0.025	0.40-0.60	0.1	0.15-0.25	0.40 max	95 max	38.5 - 52.5
14	75Ni8	1.5634	0.72-0.78	0.15-0.35	0.30-0.50	0.025	0.025	< 0.15	0.1	-	1.80-2.10	93 max	38.5 - 52.5
21	125Cr2	1.2002	1.20-1.30	0.15-0.35	0.25-0.40	0.025	0.025	0.40-0.60	0.1	-	0.40 max	97 max	42 - 57
0	102Cr6	1.2067		0.15-0.35	0.20-0.40	0.025	0.025	1.35-1.60	0.1	-	0.40 max	97 max	42 - 57

Plated Strip


Pre-plated strip is produced by applying a thin layer of material onto the surface of another; less costly metal, commonly Mild and Stainless Steels. This can provide a decorative surface finish whilst reducing the cost of the material, making it ideal for a number of applications, including interior decorative features such as hand rails, light fittings, fireplaces, curtain poles and finials, jewellery design and automotive parts. There are further benefits including improving corrosion resistance, solderability, wearability, paint adhesion, infrared reflectivity, friction reduction and altering the conductivity, depending on the combination of materials chosen. Cost reduction has made plated products an increasingly popular choice.

Plating Material	Substrate Material	Finishes		
Brass	Mild Steel	Bright, Satin/ Brushed & Antique		
Nickel	Mild Steel	Bright, Satin/ Brushed & Mirror-black		
Chrome	Mild Steel	Bright, Satin/ Brushed		
Copper	Mild Steel	Bright		
Chrome	Stainless Steel	Bright, Satin/ Brushed		

Plated Strip Electrical Applications

There is a growing use of plated strip steel in electrical applications – driven by increasing metal prices of the traditional non-ferrous materials used by the electrical industry.

Typical applications include...

- Connectors
- Switchgear
- Circuit Breaker Arc Plates

Some of the benefits plated strip offers are...

- outstanding formability and shape
- best in class corrosion resistance
- excellent braze-ability/weld-ability, and post- plating properties
- cost reduction from a complete material change, or by avoiding post-plating
- lower environmental impact

Knufoil

	KNUFOIL TYPICAL CHEMICAL COMPOSITION %								
С	Si	Mn	Р	S	Cr	Ni	Ti		
0.08	1.00	2.00	0.045	0.030	17.00 - 19.00	9.00 - 12.00	Ti 5 x C to max 0.7		

KNUFOIL STOCK RANGE								
Thickness	Thickness Width Roll Length							
0.05 mm 610 mm 7.65 m								

KNUFOIL is a special Stainless Steel alloy foil, commonly used for tool wrap applications.

KNUFOIL has been developed to provide a simple, low cost method of protecting the surface of tools, dies and other parts during the hardening process by preventing decarburization.

KNUFOIL tool wrap envelopes are simple to make, locking out the air and eliminating the need for expensive protective atmosphere furnaces and only increases hardening time by two or three minutes.

A further major advantage is that a faster quenching medium may be used - for example, water instead of oil. This is due to the insulating effect of KNUFOIL in the quenching medium, which is sufficient to reduce the risk of cracking normally incurred by the use of a faster quench.

It eliminates the need for encapsulating or coating the product in a protective material which might be difficult to remove after hardening, or using expensive protective atmosphere furnaces.

KNUFOIL is available in the standard 610 mm

Other widths are available upon request.

Packaging

BESPOKE PACKAGING

If your business needs bespoke material sizes and processing, then you probably want bespoke packaging as well. Thanks to our in house packaging design team, we can offer bespoke packaging solutions to protect your materials in transit. Whatever processing and finishing options you have chosen, your products will be packaged to arrive safely and ready to use.

You can choose to have strip material as pancake coils, traverse wound coil, flat blanks and sheets. Wire can be supplied as cut lengths, coils, formers or spools to suit your needs.

CHOOSE FROM OUR TRUSTED PARTNERS OR YOUR PREFERRED CARRIER

We firmly believe that all you and all of our customers should be able to have your material, your way. Thanks to our global network of freight providers, you can choose from air, land or sea freight so you can have your material where you want, when you want.

There is also the option to arrange your own collection from our sites in Birmingham or Mechelen, which can be organised through our sales team.

Standard Stock

WE ARE DRIVEN TO CONTINUE BUILDING A BETTER BUSINESS, BY WORKING CLOSELY WITH OUR CUSTOMERS TO GROW THEIRS.

Our materials and processing are carefully chosen to meet the exacting needs of manufacturers around the globe. We work alongside our suppliers to ensure we are at the forefront of material innovation, ensuring the availability of the highest quality material with the most competitive pricing. With over 2500 items in stock and sourcing of an extensive range or alloy grades, you can have your material, your way.

8 Cut To Length Lines
5 Edge Finishing Lines
27 Recoiling Lines
26 Slitting Lines
5 Traverse Winding Lines

	Standard Stock Range											
W	E STOCK IN	EXCESS	OF 2500	ITEMS, A	VAILABL	E AS CUT LENGT	HS/ STRA	GHTENE	o, coils	, FORMER	RS OR SPOOLS	
ı	Material		Stainless Steel									
	Temper			ANNE	ALED			HARD F	OLLED		HARD ROLLED	
E	uropean Norm			EN 1008	8-2:2005			EN 101	51:2002		EN 10139:1998	
	nickness lerances	EN ISO 9445-1:2010(P) (Thickness X* not within precision range)										
NO	European Spec.	1.49 BS 9			404 401	1.4307 1.4301		310 1300		301 1300	DC01 C590	
DESCRIPTION	AISI	32	321 316/316L		304L/304	3	01	3	04	-		
ESCI	AMS	55	10	55	07	5511/5513	55	i19	59	913	-	
٥	ASTM	A-2	240	A-240,	A-266	A-240, A-266	A-(666	A-	666	-	
THICK	(NESS (mm)					WIDT	H (mm)					
Inick	INESS (IIIII)	610	980	305	610	610	305	610	305	610	610	
	0.025						/ *		√	1		
	0.05	/ *		✓	√	✓	✓	✓	✓	✓	✓	
	0.076	✓	✓		✓	✓	✓		✓	✓	✓	
	0.08	/ *	√ *	✓							✓	
	0.1	✓	✓		✓	/ *		✓	✓	1	✓	
	0.127	✓	✓		✓	✓			✓	✓	✓	
	0.15	✓	✓		✓	✓		✓	✓	✓	✓	
	0.18		✓								✓	
	0.2	✓			✓	✓		✓	✓	✓	✓	
	0.25	✓	✓		√	✓			✓	✓	✓	
	0.3	✓			✓	✓		✓	✓	✓	✓	
	0.38	✓						✓			✓	
	0.39				✓	✓	✓	✓	✓	✓		
	0.45	✓				✓						
	0.5	✓			✓	✓	✓	✓	✓	✓	✓	
	0.6							✓	✓	✓		
	0.7						✓		✓	✓		
	0.8						✓		✓	✓		
	0.9								✓	✓		
	1						1	√	✓	1	✓	
	1.2						1		✓			
	1.5						✓	✓	✓			

Product Range

	RANGE CAN BE SUF	PPLIED AS CUT LENG	GTHS/ STRA	GHTENED.	COILS, FO	BMERS OF	S SPOOLS	
		SPECIFICATIONS AVAILAB						
				TANDARD R		ROUND AND PROFILE WIRE STANDARD RANGE		
	ТҮРЕ	GRADES AVAILABLE	Tempers Available	Thickness (mm)	Width (mm)	Tempers Available	Specifications and Forms	
		201, 301, 304L, 304, 305,	Annealed	0.01 - 2.5	3 - 1250	Available	Round Wire 0.1 to 10.00mm dia*	
_	AUSTENITIC	320, 321, 347, 316, 316L, 316Ti, 904L	All Other Tempers	0.01 - 2.0	3 - 1250		Profile Wire Upto 45mm2 area For cold worked condition, please contact us with your	
STAINLESS STEEL	FERRITIC	410S, 430, 430L, 430Ti	Annealed	0.05 - 2.0	3 - 650	Annealed Light Drawn Hard Drawn	requirements.	
SSS	FERRITIO	(439), 441, 444	All Other Tempers	0.05 - 1.6	3 - 450		Coils from 1kg to 1000kgs Formers from 500kgs to 1000kgs	
Ä	MARTENSITIC	410, 420, 431	Annealed	0.127 - 2.50	3 - 450	Specified Tensile	Spools - Wide Range Available Cut Lengths/ Straightened	
IAI	PRECIPITATION HARDENING	17/4PH, 17/7PH	Annealed	0.02 - 1.5	3 - 620	10110110	from 10mm to 4m *	
Ø	THE SHARWARD PROPERTY.	,	Condition 'C'	0.025 - 1.0	3 - 620		*Duplex Round Wire 0.8 – 8.00mm dia*	
	HEAT RESISTING STEELS	309, 310	All Tempers Available	0.025 - 3.0	3 - 1000		Cut Lengths/ Straightened from 10mm to 10m	
MO	ALPHA	Grade 1, Grade 2, Grade 3, Grade 4	A 11 T	0.005 0.00		Annealed (soft) 1/8 Hard	Round Wire 0.1 to 10.00mm dia Profile Wire Upto 45mm2 area	
TITANIUM	ALPHA/BETA	Grade 5 (Ti 6Al-4V) Grade 9 (Ti 3Al 2.5V)	All Tempers Available	0.025 - 3.00	3 - 1000	1/4 Hard 1/2 Hard Hard	Coils from 1kg to 1000kgs Formers from 500kgs to 1000kgs Spools - Wide Range Available	
	ВЕТА	21S				Spring Hard	Cut Lengths from 10mm to 10m	
	COMMERCIALLY PURE NICKELS	200, 201						
λS	NICKEL-COPPER ALLOYS	400					Round Wire 0.1 to 10.00 mm dia Upto 45 mm2 area	
NICKEL ALLOYS	NICKEL-CHROMIUM & NICKEL-CHROMIUM-IRON ALLOYS	alloy K500, alloy X, C22, alloy C2000, alloy 600, alloy 601, alloy 625, alloy C 276, alloy 718, alloy X750	All Tempers Available	0.025 - 2.5	2 - 1000	Annealed Spring Hard	Coils from 0.5 kg to 1000kgs Formers from 500kgs to 1000kgs Spools - Wide Range Available Cut Lengths/ Straightened	
Ĭ	IRON-NICKEL-CHROMIUM ALLOYS	alloy 800, alloy 825					from 10mm to 10mm	
	CONTROLLED EXPANSION ALLOYS	29/18			3 - 610			
	PURE ALUMINIUM	1000 SERIES				Annealed (soft)	Round Wire 0.1 to 10.0 mm dia Upto 45mm2 area Coils from 1kg to 1000kgs Formers from 500kgs to 1000kgs	
	ALUMINIUM COPPER ALLOY	2000 SERIES		0.01 - 3.0	3 - 1000			
MINIUM	ALUMINIUM MANGANESE ALLOY	3000 SERIES			Sheet up to	1/8 Hard 1/4 Hard		
	ALUMINIUM MAGNESIUM ALLOY	5000 SERIES	All Tempers Available	0.01 - 1.5	2000mm	1/2 Hard Hard	Spools - Wide Range Available	
ALU	ALUMINIUM MAGNESIUM + SILICON ALLOY	6000 SERIES	Available	0.01 - 3.0		Spring Hard	Cut Lengths/ Straightened from 10 mm to 10m	
	ALUMINIUM ZINC ALLOY	7000 SERIES			Please cor	ntact us with yo	ur requirements	
	CLAD ALUMINIUM	n/a			Please cor	ntact us with yo	ur requirements	
ತ ഗ	COMMERCIALLY PURE HIGH CONDUCTIVITY COPPER	C101, C102, C103, C106				Annealed	Round Wire 0.1 to 10.00 mm dia	
.AS Έ	BRASS	CZ106, CZ107, CZ108				(soft)	Upto 45 mm2 area	
H SNS	PHOSPHOR BRASS	PB102, PB103	All Tempers Available	0.01 - 3.0	3 - 1220	1/8 Hard 1/4 Hard	Coils from 1kg to 1000kgs Formers from 500kgs to 1000kgs	
COPPER, BRASS & BRONZE	NICKEL SILVERS CUPRONICKEL & HIGH COPPER CONTENT ALLOYS	NS103, NS104, NS106, NS107, C72500	Available			1/2 Hard Hard Spring Hard	Spools - Wide Range Available Cut Lengths/ Straightened from 10mm to 4m	
ŏ	COPPER BERYLLIUM ALLOYS	CB101					nom romm to mi	
& CARBON STEEL	LOW CARBON STEEL	DC01, DC03, DC04, DC05, DC06	Annealed All Other	0.01 - 3.0 0.01 - 2.0	3 - 1220 3 - 1000	Annealed (soft)	Round Wire 0.1 to 10.00 mm dia Upto 45 mm2 area	
ARE EL			Tempers Annealed	0.05 - 3.0	3 - 650	1/8 Hard	Coils from 1kg to 1000kgs	
D & C STE	HIGH CARBON STEEL	C55S, C60S, C67S, C75S, C85S, C90S, C100S, C125S, 48Si7,	All Other Tempers	0.05 - 3.0		1/4 Hard 1/2 Hard Hard	Formers from 500kgs to 1000kgs Spools - Wide Range Available	
WILD		56Si7, 51CrV4, 80CrV2, 75Ni8, 125Cr2, 102Cr6	Hardened & Tempered	0.127 - 3.0	3 - 610	Spring Hard	Cut Lengths/ Straightened from 10mm to 10m	

Knight Group Head Office

Linkside, Summit Road Cranborne Industrial Estate Potters Bar, Hertfordshire EN6 3JL United Kingdom Main Office: +44(0)1707 650251

Fax: +44(0)1707 651238 info@knight-group.co.uk

Knight Strip Metals Ltd

Sales, Processing & Warehouse

Saltley Business Park Cumbria Way, Saltley Birmingham B8 1BH United Kingdom Telephone: +44 (0)121 322 8400

Fax: +44 (0)121 322 8401 Sales 08456 447 977 sales@knight-group.co.uk

Precision Metals EU

Industriezone Mechelen-Noord (D) Omega Business Park Wayenborgstraat 25 2800 Mechelen Belgium

Telephone: +32 (0) 15 44 89 89 Fax: +32 (0) 15 44 89 90 export.sales@knight-group.co.uk

Visit our websites:

Main: www.knight-group.co.uk
Offcuts: www.ksmdirect.co.uk
www.pmdirect.be

The information contained herein is given in good faith and is based on our present knowledge and experience. However, no liability will be accepted by The Knight Group and its subsidiaries in respect of any action taken by any third party in reliance thereon. Any advice given by the Company to any third party is given for that party's assistance only and without any liability on the part of the Company. The contents of this brochure are subject to change and the most recent edition of all Knight Group documentation can be found on our website or by written request.

Any contract between the Company and a customer will be subject to the Company's Conditions of Sale. The extent of the Company's liabilities to any customer is clearly set out in those Conditions; a copy of which is available by request and can also be found on our website www.knight-group.co.uk.

